From Wikipedia, the free encyclopedia
The Laplace transform is a powerful integral transform used to switch a function from the time domain to the S-domain . The use of Laplace transform makes it much easier to solve linear differential equations with given initial conditions.
First consider the following relations:
L
{
f
′
}
=
s
L
{
f
}
−
f
(
0
)
{\displaystyle {\mathcal {L}}\{f'\}=s{\mathcal {L}}\{f\}-f(0)}
L
{
f
″
}
=
s
2
L
{
f
}
−
s
f
(
0
)
−
f
′
(
0
)
{\displaystyle {\mathcal {L}}\{f''\}=s^{2}{\mathcal {L}}\{f\}-sf(0)-f'(0)}
L
{
f
(
n
)
}
=
s
n
L
{
f
}
−
∑
i
=
1
n
s
n
−
i
f
(
i
−
1
)
(
0
)
.
{\displaystyle {\mathcal {L}}\{f^{(n)}\}=s^{n}{\mathcal {L}}\{f\}-\sum _{i=1}^{n}s^{n-i}f^{(i-1)}(0).}
Consider the following differential equation:
∑
i
=
0
n
a
i
f
(
i
)
(
t
)
=
ϕ
(
t
)
.
{\displaystyle \sum _{i=0}^{n}a_{i}f^{(i)}(t)=\phi (t).}
This equation is equivalent to
∑
i
=
0
n
a
i
L
{
f
(
i
)
(
t
)
}
=
L
{
ϕ
(
t
)
}
{\displaystyle \sum _{i=0}^{n}a_{i}{\mathcal {L}}\{f^{(i)}(t)\}={\mathcal {L}}\{\phi (t)\}}
which is equivalent to
L
{
f
(
t
)
}
=
L
{
ϕ
(
t
)
}
+
∑
i
=
1
n
a
i
∑
j
=
1
i
s
i
−
j
f
(
j
−
1
)
(
0
)
∑
i
=
0
n
a
i
s
i
.
{\displaystyle {\mathcal {L}}\{f(t)\}={{\mathcal {L}}\{\phi (t)\}+\sum _{i=1}^{n}a_{i}\sum _{j=1}^{i}s^{i-j}f^{(j-1)}(0) \over \sum _{i=0}^{n}a_{i}s^{i}}.}
Note that the
f
(
k
)
(
0
)
{\displaystyle f^{(k)}(0)}
are initial conditions.
The solution for f (t ) will be given by applying the inverse Laplace transform to
L
{
f
(
t
)
}
.
{\displaystyle {\mathcal {L}}\{f(t)\}.}
An example
We want to solve
f
″
(
t
)
+
4
f
(
t
)
=
sin
(
2
t
)
{\displaystyle f^{''}(t)+4f(t)=\sin(2t)\,\!}
with initial conditions f(0) = 0 and f ′(0)=0.
We note that
ϕ
(
t
)
=
sin
(
2
t
)
{\displaystyle \phi (t)=\sin(2t)\,\!}
and we get
L
{
ϕ
(
t
)
}
=
2
s
2
+
4
{\displaystyle {\mathcal {L}}\{\phi (t)\}={\frac {2}{s^{2}+4}}}
So this is equivalent to
s
2
L
{
f
(
t
)
}
−
s
f
(
0
)
−
f
′
(
0
)
+
4
L
{
f
(
t
)
}
=
L
{
ϕ
(
t
)
}
{\displaystyle s^{2}{\mathcal {L}}\{f(t)\}-sf(0)-f^{'}(0)+4{\mathcal {L}}\{f(t)\}={\mathcal {L}}\{\phi (t)\}}
We deduce
L
{
f
(
t
)
}
=
2
(
s
2
+
4
)
2
{\displaystyle {\mathcal {L}}\{f(t)\}={\frac {2}{(s^{2}+4)^{2}}}}
So we apply the Laplace inverse transform and get
f
(
t
)
=
1
8
sin
(
2
t
)
−
t
4
cos
(
2
t
)
{\displaystyle f(t)={\frac {1}{8}}\sin(2t)-{\frac {t}{4}}\cos(2t)}
Bibliography
A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists , Chapman & Hall/CRC Press, Boca Raton, 2002. ISBN 1-58488-299-9
External links
Examples:http://www.esr.ruhr-uni-bochum.de/rt1/syscontrol/node11.html