In econometrics and other applications of multivariate time series analysis, a variance decomposition or forecast error variance decomposition is used to aid in the interpretation of a vector autoregression (VAR) model once it has been fitted.[1] The variance decomposition indicates the amount of information each variable contributes to the other variables in the autoregression. It determines how much of the forecast error variance of each of the variables can be explained by exogenous shocks to the other variables.
where , and are dimensional column vectors, is by dimensional matrix and , and are dimensional column vectors.
Calculate the mean squared error of the h-step forecast of variable j, ,
where is the jth column of and the subscript refers to that element of the matrix. where is a lower triangular matrix obtained by a Cholesky decomposition of such that . where so is by dimensional matrix. is the covariance matrix of the errors .
The amount of forecast error variance of variable accounted for by exogenous shocks to variable is given by