From Wikipedia, the free encyclopedia
In mathematics, the generalized polygamma function or balanced negapolygamma function is a function introduced by Olivier Espinosa and Victor H. Moll .[ 1] It generalizes the polygamma function to negative and fractional order, but remains equal to it for integer positive orders. The function is balanced, that is satisfies the conditions
f
(
0
)
=
f
(
1
)
{\displaystyle f(0)=f(1)}
and
∫
0
1
f
(
x
)
d
x
=
0
{\displaystyle \int _{0}^{1}f(x)dx=0}
.
It is defined as follows:
ψ
(
z
,
q
)
=
ζ
′
(
z
+
1
,
q
)
+
(
ψ
(
−
z
)
+
γ
)
ζ
(
z
+
1
,
q
)
Γ
(
−
z
)
{\displaystyle \psi (z,q)={\frac {\zeta '(z+1,q)+(\psi (-z)+\gamma )\zeta (z+1,q)}{\Gamma (-z)}}\,}
or alternatively,
ψ
(
z
,
q
)
=
e
−
γ
z
∂
∂
z
(
e
γ
z
ζ
(
z
+
1
,
q
)
Γ
(
−
z
)
)
{\displaystyle \psi (z,q)=e^{-\gamma z}{\frac {\partial }{\partial z}}\left(e^{\gamma z}{\frac {\zeta (z+1,q)}{\Gamma (-z)}}\right)}
Several special functions can be expressed in terms of generalized polygamma function.
ψ
(
x
)
=
ψ
(
0
,
x
)
{\displaystyle \psi (x)=\psi (0,x)\,}
ψ
(
n
)
(
x
)
=
ψ
(
n
,
x
)
(
n
∈
N
)
{\displaystyle \psi ^{(n)}(x)=\psi (n,x)\,\,\,(n\in \mathbb {N} )}
Γ
(
x
)
=
e
ψ
(
−
1
,
x
)
+
1
2
ln
(
2
π
)
{\displaystyle \Gamma (x)=e^{\psi (-1,x)+{\frac {1}{2}}\ln(2\pi )}\,\,\,}
ζ
(
z
,
q
)
=
Γ
(
1
−
z
)
(
2
−
z
(
ψ
(
z
−
1
,
q
2
+
1
2
)
+
ψ
(
z
−
1
,
q
2
)
)
−
ψ
(
z
−
1
,
q
)
)
ln
(
2
)
{\displaystyle \zeta (z,q)={\frac {\Gamma (1-z)\left(2^{-z}\left(\psi \left(z-1,{\frac {q}{2}}+{\frac {1}{2}}\right)+\psi \left(z-1,{\frac {q}{2}}\right)\right)-\psi (z-1,q)\right)}{\ln(2)}}}
where
ζ
(
z
,
q
)
,
{\displaystyle \zeta (z,q),}
is the Hurwitz zeta function
ζ
′
(
−
1
,
x
)
=
ψ
(
−
2
,
x
)
+
x
2
2
−
x
2
+
1
12
{\displaystyle \zeta '(-1,x)=\psi (-2,x)+{\frac {x^{2}}{2}}-{\frac {x}{2}}+{\frac {1}{12}}}
B
n
(
q
)
=
−
Γ
(
n
+
1
)
(
2
n
−
1
(
ψ
(
−
n
,
q
2
+
1
2
)
+
ψ
(
−
n
,
q
2
)
)
−
ψ
(
−
n
,
q
)
)
ln
(
2
)
{\displaystyle B_{n}(q)=-{\frac {\Gamma (n+1)\left(2^{n-1}\left(\psi \left(-n,{\frac {q}{2}}+{\frac {1}{2}}\right)+\psi \left(-n,{\frac {q}{2}}\right)\right)-\psi (-n,q)\right)}{\ln(2)}}}
where
B
n
(
q
)
{\displaystyle B_{n}(q)}
are Bernoulli polynomials
K
(
z
)
=
A
e
ψ
(
−
2
,
z
)
+
z
2
−
z
2
{\displaystyle K(z)=Ae^{\psi (-2,z)+{\frac {z^{2}-z}{2}}}}
where K (z ) is K-function and A is Glaisher constant .
References