Jump to content

Singularity function

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Simeon.mattes (talk | contribs) at 12:54, 12 April 2012. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Singularity functions are a class of discontinues functions that contain singularity, i.e. they are discontinuous at its singular points. The functions are notated with brackets, as where n is an integer. The "<>" are often refereed as singularity brackets . The functions are defined as:

n
-2
-1
0
1
2

where: δ(x) is the Dirac delta function, also called the unit impulse. The first derivative of δ(x) is also called the unit doublet
is the Heaviside step function: H(x)=0 for x<0 and H(x)=1 for x>0. The value of H(0) will depend upon the particular convention chosen for the Heaviside step function. Note that this will only be an issue for n=0 since the functions contain a multiplicative factor of x-a for n>0.
is also called the Ramp function.

Integration

Integrating can be done in a convenient way in which the constant of integration is automatically included so the result will be 0 at x=a.

Example beam calculation

The deflection of a simply supported beam as shown in the diagram, with constant cross-section and elastic modulus, can be found using Euler-Bernoulli beam theory. Here we are using the sign convention of downwards forces and sagging bending moments being positive.

Load distribution:

Shear force:

Bending moment:

Slope:

Because the slope is not zero at x=0, a constant of integration, c, is added

Deflection:

The boundary condition u=0 at x=4m allows us to solve for c=-7Nm2

See also