Jump to content

Chloride anion exchanger

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Boghog (talk | contribs) at 06:08, 6 March 2012 (added alias to lead). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Template:PBB Solute carrier family 26, member 3, also known as CLD (chloride anion exchanger), or DRA (downregulated-in-adenoma) is a protein that in humans is encoded by the SLC26A3 gene.[1]

Function

The downregulated-in-adenoma (DRA) is a membrane protein in intestinal cells. It is an anion exchanger and a member of the sulfate anion transporter (SAT) family. It mediates chloride and bicarbonate exchange and additionally transports sulfate and other anions at the apical membrane, part of the plasma membrane of enterocytes. It is different from the anion exchanger that present in erythrocytes, renal tubule, and several other tissues.[2]

The protein encoded by this gene is a transmembrane glycoprotein that functions as a sulfate transporter. It is localized to the mucosa of the lower intestinal tract, particularly to the apical membrane of columnar epithelium and some goblet cells, and is instrumental in chloride reuptake, aiding in the creation of an osmotic gradient for resorption of fluid from the lumen of the intestine.[3]

Clinical significance

Mutations in this gene have been associated with congenital chloride diarrhoea,[1] a treatable disease.

The congenital absence of this membrane protein results in an autosomal recessive disorder called congenital chloridorrhea or congenital chloride diarrhea (CLD).[4]

See also

References

  1. ^ a b "Entrez Gene: SLC26A3 solute carrier family 26, member 3".
  2. ^ Sterling D, Brown NJ, Supuran CT, Casey JR (2002). "The functional and physical relationship between the DRA bicarbonate transporter and carbonic anhydrase II". Am. J. Physiol., Cell Physiol. 283 (5): C1522–9. doi:10.1152/ajpcell.00115.2002. PMID 12372813. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  3. ^ Singla A, Kumar A, Priyamvada S, Tahniyath M, Saksena S, Gill RK, Alrefai WA, Dudeja PK (2011). "LPA Stimulates Intestinal DRA Gene Transcription via LPA2 Receptor, PI3K/AKT and c-fos Dependent Pathway". Am J Physiol Gastrointest Liver Physiol. doi:10.1152/ajpgi.00172.2011. PMID 22159277. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  4. ^ Alrefai WA, Wen X, Jiang W, Katz JP, Steinbrecher KA, Cohen MB, Williams IR, Dudeja PK, Wu GD (2007). "Molecular cloning and promoter analysis of downregulated in adenoma (DRA)". Am. J. Physiol. Gastrointest. Liver Physiol. 293 (5): G923–34. doi:10.1152/ajpgi.00029.2007. PMID 17761837. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.