Jump to content

Talk:Borwein's algorithm

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by 87.5.217.194 (talk) at 22:24, 22 February 2012 (Self-correcting algorithms: new section). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
WikiProject iconMathematics Start‑class Low‑priority
WikiProject iconThis article is within the scope of WikiProject Mathematics, a collaborative effort to improve the coverage of mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
StartThis article has been rated as Start-class on Wikipedia's content assessment scale.
LowThis article has been rated as Low-priority on the project's priority scale.

Borweins'?

Should this be called Borweins' algorithm, as it belongs to two Borweins? Shreevatsa (talk) 23:25, 28 September 2008 (UTC)[reply]

A quick google books search suggests that "Borwein's algorithm" is an established name for the algorithm. — Carl (CBM · talk) 00:01, 29 September 2008 (UTC)[reply]
Ok then. I see only a handful of results either way (3 for Borwein's and 5 for Borweins', so actually more for the latter) but maybe you searched something else. Regular Google searches give 785 for Borwein's and 117 for Borweins', but it's hard to tell how many of them are authoritative. Anyway I am not myself familiar enough with the literature in this area, so I shouldn't really be talking :) Shreevatsa (talk) 01:01, 29 September 2008 (UTC)[reply]

Error?

I have just programmed the second algorithm (the one with ) into my TI89 Titanium - and it converges to 3.38871193..., not pi. I could not find anything wrong with my program, so something must be wrong with the algorithm. Lucas Brown 42 (talk) 18:45, 27 February 2009 (UTC)[reply]

I have just figured out and corrected the error: the article stated that
.
This should, and now does, read
.Lucas Brown 42 (talk) 20:22, 27 February 2009 (UTC)[reply]

Will soon delete sections without citations

I have put citation needed on the different sections. I will search for citations on the web for the separate formulae and try and fill in a few, then if any remain I will remove them in a couple of weeks time. Dmcq (talk) 08:26, 2 June 2011 (UTC)[reply]

Self-correcting algorithms

In the section of the quartic convergence algorithm the article says: The algorithm is not self-correcting; each iteration must be performed with the desired number of correct digits of π.
My question is: does it mean that all the other algorithms in this page are self-correcting (and only this one in particular is not)?--87.5.217.194 (talk) 22:24, 22 February 2012 (UTC)[reply]