Small non-coding RNAs in Sinorhizobium meliloti
![]() | This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
No issues specified. Please specify issues, or remove this template. |
![]() | This article needs attention from an expert on the subject. Please add a reason or a talk parameter to this template to explain the issue with the article.(February 2012) |

Post-genomic research has rendered bacterial small non-coding RNAs (sRNAs) as major players in post-transcriptional regulation of gene expression in response to environmental stimuli.[1] The α-subdivision of the Proteobacteria includes Gram-negative microorganisms with diverse life styles; frequently involving long-term interactions with higher eukaryotes.[2]
Sinorhizobium meliloti
Sinorhizobium meliloti is an agronomically relevant α-proteobacterium able to induce the formation of new specialized organs, the so-called nodules, in the roots of its cognate legume hosts (i.e. some Medicago species).[3] Within the nodule cells bacteria undergo a morphology differentiation to bacteroid, their endosymbiotic nitrogen-fixing competent form.[4] Rhizobial adaptations to soil and plant cell environments require the coordinate expression of complex gene networks in which sRNAs are expected to participate.
Discovery
Two complementary computational screens, eQRNA and RNAz, were used to search for novel sRNA-encoding genes in the intergenic regions IGRs of S. meliloti. Verification of eQRNA/RNAz predictions by Northern hybridization and RACE mapping led to the identification of eight previously unknown genes, with recognizable promoter and termination signatures, expressing small transcripts. These new genomic loci were referred to as smr, for S. meliloti RNA. Seven of the Smr transcripts, which conservation is restricted to phylogenetically related α-proteobacteria, accumulated differentially in free-living and endosymbiotic bacteria. These findings anticipate a function for these sRNAs as trans-acting antisense riboregulators of α-proteobacteria-eukaryote interactions.[5]
sRNA | Family name | Alternative names | Accession number | 5’-end | 3’-end | Predicted length (nt) | Flanking genes | Sequence[6] | Target strand[7] |
---|---|---|---|---|---|---|---|---|---|
Smr7C | αr7 | Sra03/Sm13/SmelC023 | AM939557 | 201679 | 201828 | 150[8]/106[9] | polA/SMc02851 | 5'-ACCAGATGAGGACAAAGGCCTCATC-3' | < |
5'-GATGAGGCCTTTGTCCTCATCTGGT-3' | > | ||||||||
Smr9C | αr9 | Sra32/Sm10/SmelC289 | AM939558 | 1398425 | 1398277 | 149 | SMc01933/proS | 5'-CGCGTGATCTTTAATCCGTTTCCGG-3' | < |
5'-CCGGAAACGGATTAAAGATCACGCG-3' | > | ||||||||
Smr14C2 | αr14 | Sm7/SmelC397 | AM939559 | 1667613 | 1667491 | 123 | SMc02051/tig | 5'-TGCTTGATCTGATTGGCAACCGGGA-3' | < |
5'-TCCCGGTTGCCAATCAGATCAAGCA-3' | > | ||||||||
Smr15C1 | αr15 | Sra41/Sm3/SmelC411 | AM939560 | 1698731 | 1698617 | 115 | SMc01226/SMc01225 | 5'-GAGGAGAAAGCCGCTAGATGCACCA-3' | < |
5'-TGGTGCATCTAGCGGCTTTCTCCTC-3' | > | ||||||||
Smr15C2 | αr15 | Sra41/Sm3’/SmelC412 | AM939561 | 1698817 | 1698937 | 121 | SMc01226/SMc01225 | 5'-ACTGGGAGGAGAAGCCACCAAAGAT-3' | < |
5'-ATCTTTGGTGGCTTCTCCTCCCAGT-3' | > | ||||||||
Smr22C | αr22 | Sra56/Sm1/SmelC667/6S | AM939564 | 2972251 | 2972091 | 161 [10] | SMc03975/SMc03976 | 5'-TACTAGGTAGGTGGGCACCGTATGC-3' | < |
5'-GCATACGGTGCCCACCTACCTAGTA-3' | > | ||||||||
Smr35B | αr35 | SmB6/SmelC053 | AM939563 | 577730 | 577868 | 139 | SMb20551/SMb20552 | 5'-TGGTAAGCGATGATGAGGAAGGTCG-3' | < |
5'-CGACCTTCCTCATCATCGCTTACCA-3' | > | ||||||||
Smr45C | αr45 | SmelC706 | AM939562 | 3105445 | 3105265 | 181 | SMc02983/SMc02984 | 5'-CCGCACCGTCGTTGCTTCAAGATGT-3' | < |
5'-ACATCTTGAAGCAACGACGGTGCGG-3' | > |
References
- ^ Majdalani N, Vanderpool CK, Gottesman S (2005). "Bacterial small RNA regulators". Crit Rev Biochem Mol Biol. 40: 93–113. doi:10.1080/10409230590918702. PMID 15814430.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Batut J, Andersson SGE, O’Callaghan D (2004). "The evolution of chronic infection strategies in the α-proteobacteria". Nat Rev. 2: 933–945. doi:10.1038/nrmicro1044. PMID 15550939.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Patriarca EJ, Tatè R, Ferraioli S, Iaccarino M (2004). "Organogenesis of legume root nodules". Int Rev Cytol. 234: 201–261. doi:10.1016/S0074-7696(04)34005-2. PMID 15066376.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007). "How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model". Nat Rev. 5: 619–633. doi:10.1038/nrmicro1705. PMID 17632573.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ del Val C, Rivas E, Torres-Quesada O, Toro N, Jiménez-Zurdo JI (2007). "Identification of differentially expressed small non-coding RNAs in the legume endosymbiont Sinorhizobium meliloti by comparative genomics". Mol Microbiol. 66 (5): 1080–1091. doi:10.1111/j.1365-2958.2007.05978.x. PMID 17971083.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Probes giving hybridization signals are in boldface.
- ^ , strand given in the S. meliloti 1021 genome database; <, complementary strand.
- ^ Primary transcript
- ^ Processed transcript
- ^ 5’- and 3’-end experimentally mapped
This article needs additional or more specific categories. (February 2012) |