Cardinal function
In mathematics, a cardinal function (or cardinal invariant) is a function that returns cardinal numbers.
Cardinal functions in set theory
- The most frequently used cardinal function is a function which assigns to a set "A" its cardinality, denoted by | A |.
- Aleph numbers and beth numbers can both be seen as cardinal functions defined on ordinal numbers.
- Cardinal arithmetic operations are examples of functions from cardinal numbers (or pairs of them) to cardinal numbers.
- Cardinal characteristics of a (proper) ideal I of subsets of X are:
- .
- The "additivity" of I is the smallest number of sets from I whose union is not in I any more. As any ideal is closed under finite unions, this number is always at least ; if I is a σ-ideal, then add(I)≥.
- .
- The "covering number" of I is the smallest number of sets from I whose union is all of X. As X itself is not in I, we must have add(I) ≤ cov(I).
- ,
- The "uniformity number" of I (sometimes also written ) is the size of the smallest set not in I. Assuming I contains all singletons, add(I) ≤ non(I).
-
- The "cofinality" of I is the cofinality of the partial order (I, ⊆). It is easy to see that we must have non(I) ≤ cof(I) and cov(I) ≤ cof(I).
- For a preordered set the bounding number and dominating number is defined as
- ,
- In PCF theory the cardinal function is used.[1]
Cardinal functions in topology
Cardinal functions are widely used in topology as a tool for describing various topological properties[2][3]. Below are some examples. (Note: some authors, arguing that "there are no finite cardinal numbers in general topology",[4] prefer to define the cardinal functions listed below so that they never taken on finite cardinal numbers as values; this requires modifying some of the definitions given below, e.g. by adding "" to the right-hand side of the definitions, etc.)
- Perhaps the simplest cardinal invariants of a topological space X are its cardinality and the cardinality of its topology, denoted respectively by |X | and o(X).
- The weight w(X ) of a topological space X is the cardinality of the smallest base for X. When w(X ) = the space X is said to be second countable.
- The -weight of a space X is the cardinality of the smallest -base for X.
- The character of a topological space X at a point x is the cardinality of the smallest local base for x. The character of space X is
When the space X is said to be first countable. - The density d(X ) of a space X is the cardinality of the smallest dense subset of X. When the space X is said to be separable.
- The cellularity of a space X is
is a family of mutually disjoint non-empty open subsets of . - The tightness t(x, X) of a topological space X at a point is the smallest cardinal number such that, whenever for some subset Y of X, there exists a subset Z of Y, with |Z | ≤ , such that . Symbolically,
The tightness of a space X is . When t(X) = the space X is said to be countably generated or countably tight. - The augumented tightness of a space X, is the smallest regular cardinal such that for any , there is a subset Z of Y with cardinality less than , such that .
Basic inequalities
- c(X) ≤ d(X) ≤ w(X) ≤ o(X) ≤ 2|X|
- (X) ≤ w(X)
Cardinal functions in Boolean algebras
Cardinal functions are often used in the study of Boolean algebras.[5][6]. We can mention, for example, the following functions:
- Cellularity of a Boolean algebra is the supremum of the cardinalities of antichains in .
- Length of a Boolean algebra is
- is a chain
- Depth of a Boolean algebra is
- is a well-ordered subset .
- Incomparability of a Boolean algebra is
- such that .
- Pseudo-weight of a Boolean algebra is
- such that .
Cardinal functions in algebra
Examples of cardinal functions in algebra are:
- Index of a subgroup H of G is the number of cosets.
- Dimension of a vector space V over a field K is the cardinality of any Hamel basis of V.
- More generally, for a free module M over a ring R we define rank as the cardinality of any basis of this module.
- For a linear subspace W of a vector space V we define codimension of W (with respect to V).
- For any algebraic structure it is possible to consider the minimal cardinality of generators of the structure.
- For algebraic extensions algebraic degree and separable degree are often employed (note that the algebraic degree equals the dimension of the extension as a vector space over the smaller field).
- For non-algebraic field extensions transcendence degree is likewise used.
External links
- A Glossary of Definitions from General Topology [1]
See also
References
- ^ Holz, Michael; Steffens, Karsten; and Weitz, Edi (1999). Introduction to Cardinal Arithmetic. Birkhäuser. ISBN 3764361247.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ^ Juhász, István: Cardinal functions in topology. "Mathematical Centre Tracts", nr 34. Mathematisch Centrum, Amsterdam, 1971.
- ^ Juhász, István: Cardinal functions in topology - ten years later. "Mathematical Centre Tracts", 123. Mathematisch Centrum, Amsterdam, 1980. ISBN 90-6196-196-3
- ^ Engelking, Ryszard (1989). General Topology. Heldermann Verlag, Berlin. ISBN 3885380064.
{{cite book}}
: Unknown parameter|note=
ignored (help) - ^ Monk, J. Donald: Cardinal functions on Boolean algebras. "Lectures in Mathematics ETH Zürich". Birkhäuser Verlag, Basel, 1990. ISBN 3-7643-2495-3.
- ^ Monk, J. Donald: Cardinal invariants on Boolean algebras. "Progress in Mathematics", 142. Birkhäuser Verlag, Basel, ISBN 3-7643-5402-X.