Wiener algebra
In mathematics, the Wiener algebra, named after Norbert Wiener and usually denoted by A(T), is the space of absolutely convergent Fourier series.[1] Here T denotes the circle group.
Banach algebra structure
The norm of a function f ∈ A(T) is given by
where
is the nth Fourier coefficient of f. The Wiener algebra A(T) is closed under pointwise multiplication of functions. Indeed,
therefore
Thus the Wiener algebra is a commutative unitary Banach algebra. Also, A(T) is isomorphic to the Banach algebra l1(Z), with the isomorphism given by the Fourier transform.
Properties
The sum of an absolutely convergent Fourier series is continuous, so
where C(T) is the ring of continuous functions on the unit circle.
On the other hand an integration by parts, together with the Cauchy–Schwarz inequality and Parseval's formula, shows that
- .
More generally,
for (see Katznelson (2004)).
Wiener's 1/f theorem
Wiener (1932, 1933) proved that if f has absolutely convergent Fourier series and is never zero, then its inverse 1/f also has an absolutely convergent Fourier series. Thus the maximal ideals of A(T) are of the form
Gelfand (1941, 1941b) gave a different proof using the spectral theory of commutative C*-algebras. In Newman (1975) an elementary proof was given.
Notes
- ^ Moslehian, M.S. "Wiener algebra". MathWorld.
{{cite web}}
: More than one of|author=
and|last=
specified (help)
References
- Arveson, William (2001) [1994], "A Short Course on Spectral Theory", Encyclopedia of Mathematics, EMS Press
- Gelfand, I. (1941a), "Normierte Ringe", Rec. Math. [Mat. Sbornik] N. S., 9 (51): 3–24, MR 0004726
- Gelfand, I. (1941b), "Über absolut konvergente trigonometrische Reihen und Integrale", Rec. Math. [Mat. Sbornik] N. S., 9 (51): 51–66, MR 0004727
- Katznelson, Yitzhak (2004), An introduction to harmonic analysis (Third ed.), New York: Cambridge Mathematical Library, ISBN 9780521543590
- Newman, D. J. (1975), "A simple proof of Wiener's 1/f theorem", Proceedings of the American Mathematical Society, 48: 264–265, ISSN 0002-9939, MR 0365002
- Wiener, Norbert (1932), "Tauberian Theorems", Annals of Math., 33 (1): 1–100
- Wiener, Norbert (1933), The Fourier integral and certain of its applications, Cambridge Mathematical Library, Cambridge University Press, doi:10.1017/CBO9780511662492, ISBN 978-0-521-35884-2, MR 0983891
{{citation}}
: ISBN / Date incompatibility (help)