Jump to content

Linear canonical transformation

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Jhealy (talk | contribs) at 21:27, 16 March 2006. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

Paraxial optical systems implemented entirely with thin lenses and propagation through free space and/or graded index (GRIN) media, are Quadratic Phase Systems (QPS). The effect of any arbitrary QPS on an input wavefield can be described using the linear canonical transform (LCT), a unitary, additive, three parameter class of linear integral transform.

The LCT generalizes the Fractional Fourier transform, the Fresnel transform among others.

Definition

See also

Other time-frequency transforms:

References

  • S.A. Collins, "Lens-system diffraction integral written in terms of matrix optics," J. Opt. Soc. Amer. 60, 1168–1177 (1970).
  • M. Moshinsky and C. Quesne, "Linear canonical transformations and their unitary representations," J. Math. Phys. 12, 8, 1772–1783, (1971).