Moore matrix
Appearance
In linear algebra, a Moore determinant, named after E. H. Moore, is a determinant defined over a finite field from a square Moore matrix. A Moore matrix has successive powers of the Frobenius automorphism applied to the first column, i.e., an m × n matrix
or
for all indices i and j. (Some authors use the transpose of the above matrix.)
The Moore determinant of a square Moore matrix (so m = n) can be expressed as:
where c runs over a complete set of direction vectors, made specific by having the last non-zero entry equal to 1.
Dickson used the Moore determinant in finding the modular invariants of the general linear group over a finite field.
See also
References
- David Goss (1996). Basic Structures of Function Field Arithmetic. Springer Verlag. ISBN 3-540-63541-6. Chapter 1.
- Moore, E. H. (1896), "A two-fold generalization of Fermat's theorem.", American M. S. Bull., 2: 189–199, doi:10.1090/S0002-9904-1896-00337-2, JFM 27.0139.05