From Wikipedia, the free encyclopedia
The factor regression model [ 1] , or hybrid factor model, is a special multivariate model with the following form.
y
n
=
A
x
n
+
B
z
n
+
c
+
e
n
{\displaystyle \mathbf {y} _{n}=\mathbf {A} \mathbf {x} _{n}+\mathbf {B} \mathbf {z} _{n}+\mathbf {c} +\mathbf {e} _{n}}
where,
y
n
{\displaystyle \mathbf {y} _{n}}
is the
n
{\displaystyle n}
-th
G
×
1
{\displaystyle G\times 1}
(known) observation.
x
n
{\displaystyle \mathbf {x} _{n}}
is the
n
{\displaystyle n}
-th sample
L
x
{\displaystyle L_{x}}
(unknown) hidden factors.
A
{\displaystyle \mathbf {A} }
is the (unknown) loading matrix of the hidden factors.
z
n
{\displaystyle \mathbf {z} _{n}}
is the
n
{\displaystyle n}
-th sample
L
z
{\displaystyle L_{z}}
(known) design factors.
B
{\displaystyle \mathbf {B} }
is the (unknown) regression coefficients of the design factors.
c
{\displaystyle \mathbf {c} }
is a vector of (unknown) constant term or intercept.
e
n
{\displaystyle \mathbf {e} _{n}}
is (unknown) error or white Gaussian noise.
Factor Regression Model, Factor Analysis Model and Regression Model
The factor regression model can be viewed as a combination of factor analysis model (
y
n
=
A
x
n
+
c
+
e
n
{\displaystyle \mathbf {y} _{n}=\mathbf {A} \mathbf {x} _{n}+\mathbf {c} +\mathbf {e} _{n}}
) and regression model (
y
n
=
B
z
n
+
c
+
e
n
{\displaystyle \mathbf {y} _{n}=\mathbf {B} \mathbf {z} _{n}+\mathbf {c} +\mathbf {e} _{n}}
).
Alternatively, the model can be viewed as a special kind of factor model, the hybrid factor model, where, part of the factor matrix are already known.
y
n
=
A
x
n
+
B
z
n
+
c
+
e
n
=
[
A
B
]
[
x
n
z
n
]
+
c
+
e
n
=
D
f
n
+
c
+
e
n
{\displaystyle {\begin{aligned}&\mathbf {y} _{n}=\mathbf {A} \mathbf {x} _{n}+\mathbf {B} \mathbf {z} _{n}+\mathbf {c} +\mathbf {e} _{n}\\=&{\begin{bmatrix}\mathbf {A} &\mathbf {B} \end{bmatrix}}{\begin{bmatrix}\mathbf {x} _{n}\\\mathbf {z} _{n}\end{bmatrix}}+\mathbf {c} +\mathbf {e} _{n}\\=&\mathbf {D} \mathbf {f} _{n}+\mathbf {c} +\mathbf {e} _{n}\end{aligned}}}
where,
D
=
[
A
B
]
{\displaystyle \mathbf {D} ={\begin{bmatrix}\mathbf {A} &\mathbf {B} \end{bmatrix}}}
is the loading matrix of the hybrid factor model and
f
n
=
[
x
n
z
n
]
{\displaystyle \mathbf {f} _{n}={\begin{bmatrix}\mathbf {x} _{n}\\\mathbf {z} _{n}\end{bmatrix}}}
are the factors, including the known factors and unknown factors.
Reference
^ Carvalho, Carlos M. (1 December 2008). "High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics". Journal of the American Statistical Association . 103 (484): 1438– 1456. doi :10.1198/016214508000000869 .