Jump to content

Formally smooth map

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Woohookitty (talk | contribs) at 06:59, 26 April 2011 (WPCleaner (v1.04) Repairing link to disambiguation page - (You can help) - French / Detection by Wikipedia:WCW - Category with space). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In Algebraic geometry and Commutative algebra, a ring homomorphism is called formally smooth (from French: Formellement lisse) if it satisfies the following infinitesimal lifting property:

Suppose B is given the structure of an A-algebra via the map f. Given a commutative A-algebra, C, and a Nilpotent ideal , any A-algebra homomorphism may be lifted to an A-algebra map . If moreover any such lifting is unique, then f is said to be formally etale. [1] [2]

Formally smooth maps were defined by Alexander Grothendieck in Éléments de géométrie algébrique IV. Among other things, Grothndieck proved that any such map is flat.[1] [2]

References

  1. ^ a b Grothendieck, Alexandre; Dieudonné, Jean (1964). "Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Première partie". Publications Mathématiques de l'IHÉS. 20: 5–259. doi:10.1007/bf02684747. MR 0173675.
  2. ^ a b Grothendieck, Alexandre; Dieudonné, Jean (1967). "Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie". Publications Mathématiques de l'IHÉS. 32: 5–361. doi:10.1007/bf02732123. MR 0238860.