Jump to content

Formally smooth map

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by לירן (talk | contribs) at 09:39, 25 April 2011 (Created page with 'In Algebraic geometry and Commutative algebra, a ring homomorphism <math>f:A\to B</math> is called '''formally smooth''' (from French: '''Formelleme...'). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In Algebraic geometry and Commutative algebra, a ring homomorphism is called formally smooth (from French: Formellement lisse) if it satisfies the following infinitesimal lifting property:

Suppose B is given the structure of an A-algebra via the map f. Given a commutative A-algebra, C, and a Nilpotent ideal , any A-algebra homomorphism may be lifted to an A-algebra map . If moreover any such lifting is unique, then f is said to be formally etale.

Formally etale maps were defined by Alexander Grothendieck in Éléments de géométrie algébrique IV. Among other things, Grothndieck proved that any such map is flat.

References

  • Grothendieck, Alexandre; Dieudonné, Jean (1964). "Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Première partie". Publications Mathématiques de l'IHÉS. 20: 5–259. doi:10.1007/bf02684747. MR 0173675.
  • Grothendieck, Alexandre; Dieudonné, Jean (1967). "Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie". Publications Mathématiques de l'IHÉS. 32: 5–361. doi:10.1007/bf02732123. MR 0238860.