Jump to content

Pseudolinear function

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Isheden (talk | contribs) at 19:55, 17 April 2011. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a pseudoconvex function on an open convex set is a function that is differentiable in such that for every ,

It is pseudoconcave if this is true of .

A pseudolinear function is one that is both pseudoconvex and pseudoconcave.

It can be shown (see Cambini and Martein) that is pseudolinear if and only if for every ,

In mathematical optimization, linear–fractional programs have pseudolinear objective functions and linear–inequality constraints: These properties allow linear-fractional problems to be solved by a variant of the simplex algorithm (of George B. Dantzig).[1][2][3]

  1. ^ Chapter five: Craven, B. D. (1988). Fractional programming. Sigma Series in Applied Mathematics. Vol. 4. Berlin: Heldermann Verlag. p. 145. ISBN 3-88538-404-3. MR949209. {{cite book}}: Cite has empty unknown parameter: |1= (help)
  2. ^ Template:Cite article
  3. ^ Template:Cite article

References

Further reading

  • Chew, Kim Lin; Choo, Eng Ung (1984). "Pseudolinearity and efficiency". Mathematical Programming. 28 (2): 226–239. doi:10.1007/BF02612363. {{cite journal}}: Invalid |ref=harv (help)
  • Mishra, Shashi Kant; Giorgi, Giorgio (2008). "η-Pseudolinearity: Invexity and Generalized Monotonicity". Invexity and optimization. Nonconvex optimization and its applications. Vol. 88. Springer. ISBN 9783540785620. {{cite book}}: Invalid |ref=harv (help); Unknown parameter |isbn10= ignored (help)
  • Kaul, R. N.; Lyall, Vinod; Kaur, Surjeet (1988). "Semilocal pseudolinearity and efficiency". European Journal of Operational Research. 36 (3). Elsevier Science B.V.: 402–409. doi:10.1016/0377-2217(88)90133-6. {{cite journal}}: Invalid |ref=harv (help); Unknown parameter |month= ignored (help)
  • Jeyakumar, V.; Yang, X. Q. (1995). "On characterizing the solution sets of pseudolinear programs". Journal of Optimization Theory and Applications. 87 (3): 747–755. doi:10.1007/BF02192142. {{cite journal}}: Invalid |ref=harv (help); Unknown parameter |month= ignored (help)
  • Komlósi, S. (1993-06-11). "First and second order characterizations of pseudolinear functions". European Journal of Operational Research. 67 (2). Elsevier Science B.V.: 278–286. doi:10.1016/0377-2217(93)90069-Y. {{cite journal}}: Invalid |ref=harv (help)
  • Ansari, Qamrul Hasan; Schaible, Siegfried; Yao, Jen-Chih (1999). "η-Pseudolinearity". Decisions in Economics and Finance. 22 (1–2): 31–39. doi:10.1007/BF02912349. {{cite journal}}: Invalid |ref=harv (help); Unknown parameter |month= ignored (help)
  • Giorgi, Giorgio; Rueda, Norma G. (2009). "η-Pseudolinearity and Efficiency" (PDF). International Journal of Optimization: Theory, Methods and Applications. 1 (2): 155–159. ISSN 2070-5565. {{cite journal}}: Invalid |ref=harv (help)
  • Cambini, Alberto; Martein, Laura (2009). "Section 3.3: Quasilinearity and Pseudolinearity". Lecture Notes in Economics and Mathematical Systems. Vol. 616. Springer. pp. 50–57. doi:10.1007/978-3-540-70876-6. ISBN 9783540708759. {{cite book}}: Invalid |ref=harv (help); Missing or empty |title= (help); Unknown parameter |isbn10= ignored (help)