Functional neuroimaging

Functional neuroimaging is the use of neuroimaging technology to measure an aspect of brain function, often with a view to understanding the relationship between activity in certain brain areas and specific mental functions. It is primarily used as a research tool in cognitive neuroscience, cognitive psychology, neuropsychology, and social neuroscience.
Overview
Common methods of functional neuroimaging include
- Positron emission tomography (PET),
- Functional magnetic resonance imaging (fMRI),
- multichannel electroencephalography (EEG),
- magnetoencephalography (MEG),
- near infrared spectroscopic imaging (NIRSI), and
PET, fMRI and NIRSI can measure localized changes in cerebral blood flow related to neural activity. These changes are referred to as activations. Regions of the brain which are activated when a subject performs a particular task may play a role in the neural computations which contribute to the behaviour. For instance, widespread activation of the occipital lobe is typically seen in tasks which involve visual stimulation (compared with tasks that do not). This part of the brain receives signals from the retina and is believed to play a role in visual perception.
Other methods of neuroimaging involve recording of electrical currents or magnetic fields, for example EEG and MEG. Different methods have different advantages for research; for instance, MEG measures brain activity with high temporal resolution (down to the millsecond level), but is limited in its ability to localize that activity. fMRI does a much better job of localizing brain activity for spatial resolution, but at the cost of speedCite error: A <ref>
tag is missing the closing </ref>
(see the help page).
They argued that some of the interpretations of the study were "scientifically unfounded".[1]
See also
- Analysis of Functional NeuroImages
- Electroencephalography
- Event related potential
- FMRIB Software Library
- FreeSurfer
- Magnetoencephalography
- Perfusion Scanning
- Single photon emission computed tomography
- Statistical Parametric Mapping
- Dynamic causal modelling
References
- ^ Chris Frith et al. (2007). "Politics and the Brain". In: The New York Times, 14 November 2007.
Further reading
- Cabeza, R., & Kingstone, K. (eds.) (2006). Handbook of Functional Neuroimaging of Cognition. MIT Press.
- Cacioppo, J.T., Tassinary, L.G., & Berntson, G. G. (2007). Handbook of Psychophysiology. Cambridge University Press.
- Hillary, F.G., & DeLuca, J. (2007). Functional Neuroimaging in Clinical Populations.
- Kanwisher, N., & Duncan, J. (2004). Functional Neuroimaging of Visual Cognition.
- Silbersweig, D., & Stern, E. (2001). Functional Neuroimaging and Neuropsychology Fundamentals and Practice.
- Thatcher, R,W. (1994). Functional Neuroimaging: Technical Foundations.