Talk:Free Boolean algebra
Appearance
Disputed
I disputed myself here because I'm not quite sure of this fact--is this really sufficient to characterize free BAs? It's not obvious that this condition implies that any permutation of the generators extends to an automorphism, which is surely a property we want. Can't find any clear refere
Initial objects
I think the main definition is wrong. In any category, Initial objects if they exist are unique (up to isomorphism). The only initial object in the category of non-trivial boolean rings is Z2. --CSTAR 19:36, 2 November 2005 (UTC)
- Quite so, and that is my fault and not Trovatore's so I should fix it. There is a category of algebras in which the initial algebra is the initial object, namely the Eilenberg-Moore category, but that category has more structure than the plain category of algebras. The wording I introduced was confused and clear evidence of insufficient tea. --- Charles Stewart 19:47, 2 November 2005 (UTC)
- I'm still not sure I understand this. What's the Eilenberg-Moore category? Anyway does this addition make any difference, because free object still is defined as an initial object in a category which does not depend on the generators in any way. --CSTAR 20:32, 2 November 2005 (UTC)
- It's one of the two canonical categories generated by a monad (the other being the Kleisli category of resultions, which is sort of a dual to the Eilenberg-Moore category), where the algebra is defined in a different way to the regular way that is due to Lawvere:
- The structure of the algebra is given by category and a monad T over that category, that is a functor equipped with two nat. trans. specifying its unit and product;
- The Eilbenberg-Moore category over this algebra has its objects given by a pair of (i) an object A from the base category, and (ii) any of those arrows f:TA --> A which satisfy certain conditions that show they behave reasonably around the conditions on unit and product for the monad.
- There's much more machinery on this definition of algebra than the regular definition of algebra, but this Lawverian conception of algebra is very powerful and admits a lot of nice generalisations of the regular notion. Alternatively it's all the worst sort of generalised abstract nonsense. I used Lambek&Scott's "Intro to higher-order categorical logic" to check my defs, though they call monads triples there.--- Charles Stewart 16:02, 3 November 2005 (UTC)
- Postscript: I didn't explain where the regular homs on algebras will occur. The arrows of the E-M category will not contain all the automorphisms of the BA: I'm not sure where you will find these, but maybe they will be the nat. trans. from the monad onto itself. I'll ask someone: I didn't find this explained in L&S.--- Charles Stewart 16:10, 3 November 2005 (UTC)
- Yikes. That makes the characterization I proposed seem, I dunno ... Jurassic :)--CSTAR 01:34, 4 November 2005 (UTC)
- Well... It certainly frightens computer scientists who are told that these constructions are the right way to describe input/output for functional programming languages. BTW, Chapter VI of Mac Lane's CftWM is all about the monad - algebra connection; the history there contradicts some of what I said: it turns out the E-M construction is originited later but pretty much independently of Lawvere's work, and it was a later researcher, Pareigis, who spelt out the connection. --- Charles Stewart 19:20, 4 November 2005 (UTC)
Converse follows
It can easily be shown that the free Boolean generated by S, (π, B) pi; is injective. The universal proerty is the
- This should follow by applying the universal property. More generally, the universal property implies that the induced mappings are functorial.--CSTAR 04:30, 3 November 2005 (UTC)