Hadamard's maximal determinant problem
Hadamard's maximal determinant problem, named after Jacques Hadamard, asks for the largest possible determinant of a matrix with elements restricted to the set {1,−1}. The question for matrices with elements restricted to the set {0,1} is equivalent: the maximal determinant of a {1,−1} matrix of size n is 2n−1 times the maximal determinant of a {0,1} matrix of size n−1. The problem was first posed by Jacques Hadamard in the 1893 paper [1] in which he presented his famous determinant bound, but the problem remains unsolved for matrices of general size. Hadamard's bound implies that {1, −1}-matrices of size n have determinant at most nn/2. Matrices whose determinants attain the bound are now known as Hadamard matrices, although examples had earlier been found by Sylvester.[2] Any two rows of an n×n Hadamard matrix are orthogonal, which is impossible for a {1, −1} matrix when n is an odd number greater than 1. When n ≡ 2 (mod 4), two rows that are both orthogonal to a third row cannot be orthogonal to each other. Together, these statements imply that an n×n Hadamard matrix can exist only if n = 1, 2, or a multiple of 4. Hadamard matrices have been well studied, but it is not known whether a Hadamard matrix of size 4k exists for every k ≥ 1. The smallest n for which an n×n Hadamard matrix is not known to exist is 668.
Matrix sizes n for which n ≡ 1, 2, or 3 (mod 4) have received less attention. Nevertheless, some results are known, including:
- tighter bounds for n ≡ 1, 2, or 3 (mod 4) (These bounds, due to Barba, Ehlich, and Wojtas, are known not to be always attainable.),
- a few infinite sequences of matrices attaining the bounds for n ≡ 1 or 2 (mod 4),
- a number of matrices attaining the bounds for specific n ≡ 1 or 2 (mod 4),
- a number of matrices not attaining the bounds for specific n ≡ 1 or 3 (mod 4), but that have been proved by exhaustive computation to have maximal determinant.
The design of experiments in statistics makes use of {1, −1} matrices X (not necessarily square) for which the information matrix XTX has maximal determinant. (The notation XT denotes the transpose of X.) Such matrices are known as D-optimal designs.[3] If X is a square matrix, it is known as a saturated D-optimal design.
Equivalence and normalization of {1, −1} matrices
Any of the following operations, when performed on a {1, −1} matrix R, changes the determinant of R only by a minus sign:
- Negation of a row.
- Negation of a column.
- Interchange of two rows.
- Interchange of two columns.
Two {1,−1} matrices, R1 and R2, are considered equivalent if R1 can be converted to R2 by some sequence of the above operations. The determinants of equivalent matrices are equal, except possibly for a sign change, and it is often convenient to standardize R by means of negations and permutations of rows and columns. A {1, −1} matrix is normalized if all elements in its first row and column equal 1. When the size of a matrix is odd, it is sometimes useful to use a different normalization in which every row and column contains an even number of elements 1 and an odd number of elements −1. Either of these normalizations can be accomplished using the first two operations.
Connection of the maximal determinant problems for {1, −1} and {0, 1} matrices
There is a one-to-one map from the set of normalized n×n {1, −1} matrices to the set of (n−1)×(n-1) {0, 1} matrices under which the magnitude of the determinant is reduced by a factor of 21−n. This map consists of the following steps.
- Subtract row 1 of the {1, −1} matrix from rows 2 through n. (This does not change the determinant.)
- Extract the (n−1)×(n−1) submatrix consisting of rows 2 through n and columns 2 through n. This matrix has elements 0 and −2. (The determinant of this submatrix is the same as that of the original matrix, as can be seen by performing a cofactor expansion on column 1 of the original matrix.)
- Divide the submatrix by −2 to obtain a {0, 1} matrix. (This multiplies the determinant by (−2)1-n.)
Example:
In this example, the original matrix has determinant −16 and its image has determinant 2 = −16·(−2)−3.
Since the determinant of a {0, 1} matrix is an integer, the determinant of an n×n {1, −1} matrix is an integer multiple of 2n−1.
Upper bounds on the maximal determinant
Gram matrix
Let R be an n by n {1, −1} matrix. The Gram matrix of R is defined to be the matrix G = RRT. From this definition it follows that G
- is an integer matrix,
- is symmetric,
- is positive-semidefinite,
- has constant diagonal whose value equals n.
Hadamard's bound (for all n)
Hadamard's bound can be derived by noting that |det R| = (det G)1/2 ≤ (det nI)1/2 = nn/2, which is a consequence of the observation that nI, where I is the n by n identity matrix, is the unique matrix of maximal determinant among matrices satisfying properties 1–4. That det R must be an integer multiple of 2n−1 can be used to provide another demonstration that Hadamard's bound is not always attainable. When n is odd, the bound nn/2 is either non-integer or odd, and is therefore unattainable except when n = 1. When n = 2k with k odd, the highest power of 2 dividing Hadamard's bound is 2k which is less than 2n−1 unless n = 2. Therefore Hadamard's bound is unattainable unless n = 1, 2, or a multiple of 4.
Barba's bound for n odd
When n is odd, property 1 for Gram matrices can be strengthened to
- G is an odd-integer matrix.
This allows a sharper upper bound[4] to be derived: |det R| = (det G)1/2 ≤ (det (n-1)I+J)1/2 = (2n−1)1/2(n−1)(n−1)/2, where J is the all-one matrix. Here (n-1)I+J is the maximal-determinant matrix satisfying the modified property 1 and properties 2–4. It is unique up to multiplication of any set of rows and the corresponding set of columns by −1. The bound is not attainable unless 2n−1 is a perfect square, and is therefore never attainable when n ≡ 3 (mod 4).
The Ehlich–Wojtas bound for n ≡ 2 (mod 4)
When n is even, the set of rows of R can be partitioned into two subsets.
- Rows of even type contain an even number of elements 1 and an even number of elements −1.
- Rows of odd type contain an odd number of elements 1 and an odd number of elements −1.
The dot product of two rows of the same type is congruent to n (mod 4); the dot product of two rows of opposite type is congruent to n+2 (mod 4). When n ≡ 2 (mod 4), this implies that, by permuting rows of R, we may assume the standard form,
where A and D are symmetric integer matrices whose elements are congruent to 2 (mod 4) and B is a matrix whose elements are congruent to 0 (mod 4). In 1964, Ehlich[5] and Wojtas[6] independently showed that in the maximal determinant matrix of this form, A and D are both of size n/2 and equal to (n−2)I+2J while B is the zero matrix. This optimal form is unique up to multiplication of any set of rows and the corresponding set of columns by −1 and to simultaneous application of a permutation to rows and columns. This implies the bound det R ≤ (2n−2)(n−2)(n−2)/2. Ehlich showed that if R attains the bound, and if the rows and columns of R are permuted so that both RRT and RTR have the standard form and are suitably normalized, then we may write
where W, X, Y, and Z are (n/2)×(n/2) matrices with constant row and column sums w, x, y, and z that satisfy w = −z and x = y. This implies that w2+x2 = 2n−2. Hence the Ehlich–Wojtas bound is not attainable unless 2n−2 is expressible as the sum of two squares.
Ehlich's bound for n ≡ 3 (mod 4)
When n is odd, the by using the freedom to multiply rows by −1, one may impose the condition that each row of R contain an even number of elements 1 and an odd number of elements −1. Therefore property 1 of G may be strengthened to
- G is a matrix with integer elements congruent to n (mod 4).
When n ≡ 1 (mod 4), the optimal form of Barba satisfies this stronger property, but when n ≡ 3 (mod 4), it does not. Ehlich[7] showed that in the latter situation, the strengthened property 1 implies that the maximal-determinant form of G can be written as B−J where J is the all-one matrix and B is a block-diagonal matrix whose diagonal blocks are of the form (n-3)I+4J. Moreover, he showed that in the optimal form, the number of blocks, s, depends on n as shown in the table below, and that each block either has size r or size r+1 where
n | s |
---|---|
3 | 3 |
7 | 5 |
11 | 5 or 6 |
15 − 59 | 6 |
≥ 63 | 7 |
Except for n=11 where there are two possibilities, the optimal form is unique up to multiplication of any set of rows and the corresponding set of columns by −1 and to simultaneous application of a permutation to rows and columns. This optimal form leads to the bound
where v = n−rs is the number of blocks of size r+1 and u =s−v is the number of blocks of size r. Cohn[8] analyzed the bound and determined that, apart from n = 3, it is an integer only for n = 112t2±28t+7 for some positive integer t. Tamura[9] derived additional restrictions on the attainability of the bound using the Hasse-Minkowski theorem on the rational equivalence of quadratic forms, and showed that the smallest n > 3 for which Ehlich's bound is conceivably attainable is 511.
Maximal determinants up to size 18
The maximal determinant is known up to n = 18. In the following table, D(n) represents the maximal determinant divided by 2n−1.
n | D(n) | Notes |
---|---|---|
1 | 1 | Hadamard matrix |
2 | 1 | Hadamard matrix |
3 | 1 | Attains Ehlich bound |
4 | 2 | Hadamard matrix |
5 | 3 | Attains Barba bound; circulant matrix |
6 | 5 | Attains Ehlich–Wojtas bound |
7 | 9 | 98.20% of Ehlich bound |
8 | 32 | Hadamard matrix |
9 | 56 | 84.89% of Barba bound |
10 | 144 | Attains Ehlich–Wojtas bound |
11 | 320 | 94.49% of Ehlich bound; three non-equivalent matrices |
12 | 1458 | Hadamard matrix |
13 | 3645 | Attains Barba bound; maximal-determinant matrix is {1,−1} incidence matrix of projective plane of order 3 |
14 | 9477 | Attains Ehlich–Wojtas bound |
15 | 25515 | 97.07% of Ehlich bound |
16 | 131072 | Hadamard matrix; five non-equivalent matrices |
17 | 327680 | 87.04% of Barba bound; three non-equivalent matrices |
18 | 1114112 | Attains Ehlich–Wojtas bound; three non-equivalent matrices |
References
- ^ Hadamard, J. (1893), "Résolution d'une question relative aux déterminants", Bulletin des Sciences Mathématiques, 17: 240–246
- ^ Sylvester, J. J. (1867), "Thoughts on inverse orthogonal matrices, simultaneous sign successions, and tesselated pavements in two or more colours, with applications to Newton's rule, ornamental tile-work, and the theory of numbers", London Edinburgh and Dublin Philos. Mag. and J. Sci., 34: 461–475
- ^ Galil, Z.; Kiefer, J. (1980), "D-optimum weighing designs", Ann. Statist., 8: 1293–1306
- ^ Barba, Guido (1933), "Intorno al teorema di Hadamard sui determinanti a valore massimo", Giorn. Mat. Battaglini, 71: 70–86.
- ^ Ehlich, Hartmut (1964), "Determinantenabschätzungen für binäre Matrizen", Math. Zeitschr., 83: 123–132.
- ^ Wojtas, M. (1964), "On Hadamard's inequality for the determinants of order non-divisible by 4", Colloq. Math., 12: 73–83.
- ^ Ehlich, Hartmut (1964), "Determinantenabschätzungen für binäre Matrizen mit n ≡ 3 mod 4", Math. Zeitschr., 84: 438–447.
- ^ Cohn, J. H. E. (2000), "Almost D-optimal designs", Utilitas Math., 57: 121–128.
- ^ Tamura, Hiroki (2006), "D-optimal designs and group divisible designs", Journal of Combinatorial Designs, 14: 451–462
{{citation}}
: Unknown parameter|doe=
ignored (help).