Jump to content

Spt function

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Gandalf61 (talk | contribs) at 12:43, 25 January 2011 (References: rmv parent cats). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The spt function (smallest parts function) is a function in number theory that counts the sum of the number of smallest parts in each partition of a positive integer. It is related to the partition function.

For example, there are five partitions of 4: (1,1,1,1), (1,1,2), (1,3), (2,2) and (4). These partitions have 4, 2, 1, 2 and 1 smallest parts respectively. So spt(4) = 4 + 2 + 1 + 2 + 1 = 10.

The first few values of spt(n) are:

1, 3, 5, 10, 14, 26, 35, 57, 80, 119, 161, 238, 315, 440, 589 ... (sequence A092269 in the OEIS)

Like many functions in mathematics, spt(n) has a generating function. There are connections to Maass forms, and under certain conditions the generating function is an eigenform for some Hecke operators.[1]

While a closed formula is not known for spt(n), there are Ramanajuan-like congruences including

[2]

References

  1. ^ Frank Garvan. "Congruences for Andrews' spt-function modulo 32760 and extension of Akin's Hecke-type partition congruences". {{cite journal}}: Cite journal requires |journal= (help)
  2. ^ George Andrews. "The number of smallest parts in the partitions of n". {{cite journal}}: Cite journal requires |journal= (help)