Pseudolinear function
Appearance
![]() | It has been suggested that this article be merged into Pseudoconvex function. (Discuss) Proposed since January 2011. |
In mathematics, a pseudoconvex function on an open convex set is a function that is differentiable in such that for every ,
It is pseudoconcave if this is true of .
A pseudolinear function is one that is both pseudoconvex and pseudoconcave.
It can be shown (see Cambini and Martein) that is pseudolinear if and only if for every ,
References
- Rapcsak, T. (1991). "On pseudolinear functions". European Journal of Operational Research. 50 (3): 353–360. doi:10.1016/0377-2217(91)90267-Y. ISSN 0377-2217.
{{cite journal}}
: Invalid|ref=harv
(help); Unknown parameter|day=
ignored (help); Unknown parameter|month=
ignored (help) - Mangasarian, O. L. (1965). "Pseudo-Convex Functions". Journal of the Society for Industrial and Applied Mathematics Series A. 3 (2): 281–290. doi:10.1137/0303020. ISSN 0363-0129.
{{cite journal}}
: Invalid|ref=harv
(help); Unknown parameter|month=
ignored (help)
Further reading
- Chew, Kim Lin; Choo, Eng Ung (1984). "Pseudolinearity and efficiency". Mathematical Programming. 28 (2): 226–239. doi:10.1007/BF02612363.
{{cite journal}}
: Invalid|ref=harv
(help) - Mishra, Shashi Kant; Giorgi, Giorgio (2008). "η-Pseudolinearity: Invexity and Generalized Monotonicity". Invexity and optimization. Nonconvex optimization and its applications. Vol. 88. Springer. ISBN 9783540785620.
{{cite book}}
: Invalid|ref=harv
(help); Unknown parameter|isbn10=
ignored (help) - Kaul, R. N.; Lyall, Vinod; Kaur, Surjeet (1988). "Semilocal pseudolinearity and efficiency". European Journal of Operational Research. 36 (3). Elsevier Science B.V.: 402–409. doi:10.1016/0377-2217(88)90133-6.
{{cite journal}}
: Invalid|ref=harv
(help); Unknown parameter|month=
ignored (help) - Jeyakumar, V.; Yang, X. Q. (1995). "On characterizing the solution sets of pseudolinear programs". Journal of Optimization Theory and Applications. 87 (3): 747–755. doi:10.1007/BF02192142.
{{cite journal}}
: Invalid|ref=harv
(help); Unknown parameter|month=
ignored (help) - Komlósi, S. (1993). "First and second order characterizations of pseudolinear functions". European Journal of Operational Research. 67 (2). Elsevier Science B.V.: 278–286. doi:10.1016/0377-2217(93)90069-Y.
{{cite journal}}
: Invalid|ref=harv
(help); Unknown parameter|day=
ignored (help); Unknown parameter|month=
ignored (help) - Ansari, Qamrul Hasan; Schaible, Siegfried; Yao, Jen-Chih (1999). "η-Pseudolinearity". Decisions in Economics and Finance. 22 (1–2): 31–39. doi:10.1007/BF02912349.
{{cite journal}}
: Invalid|ref=harv
(help); Unknown parameter|month=
ignored (help) - Giorgi, Giorgio; Rueda, Norma G. (2009). "η-Pseudolinearity and Efficiency" (PDF). International Journal of Optimization: Theory, Methods and Applications. 1 (2): 155–159. ISSN 2070-5565.
{{cite journal}}
: Invalid|ref=harv
(help) - Cambini, Alberto; Martein, Laura (2009). "Section 3.3: Quasilinearity and Pseudolinearity". Lecture Notes in Economics and Mathematical Systems. Vol. 616. Springer. pp. 50–57. doi:10.1007/978-3-540-70876-6. ISBN 9783540708759.
{{cite book}}
: Invalid|ref=harv
(help); Missing or empty|title=
(help); Unknown parameter|isbn10=
ignored (help)
This redirect has not been added to any content categories. Please help out by adding categories to it so that it can be listed with similar redirects, in addition to a stub category. (January 2011) |