Pseudolinear function
Appearance
An editor has nominated this article for deletion. You are welcome to participate in the deletion discussion, which will decide whether or not to retain it. |
A function is said to be pseudoconvex in if it is differentiable in and for any ,
- .
It is pseudoconcave if this is true for .
A pseudolinear function is one that is both pseudoconvex and pseudoconcave.
References
- Rapcsak, T. (1991). "On pseudolinear functions". European Journal of Operational Research. 50 (3): 353–360. doi:10.1016/0377-2217(91)90267-Y. ISSN 0377-2217.
{{cite journal}}
: Invalid|ref=harv
(help); Unknown parameter|day=
ignored (help); Unknown parameter|month=
ignored (help) - Mangasarian, O. L. (1965). "Pseudo-Convex Functions". Journal of the Society for Industrial and Applied Mathematics Series A. 3 (2): 281–290. doi:10.1137/0303020. ISSN 0363-0129.
{{cite journal}}
: Invalid|ref=harv
(help); Unknown parameter|month=
ignored (help)
Further reading
- Chew, Kim Lin; Choo, Eng Ung (1984). "Pseudolinearity and efficiency". Mathematical Programming. 28 (2): 226–239. doi:10.1007/BF02612363.
{{cite journal}}
: Invalid|ref=harv
(help) - Mishra, Shashi Kant; Giorgi, Giorgio (2008). "η-Pseudolinearity: Invexity and Generalized Monotonicity". Invexity and optimization. Nonconvex optimization and its applications. Vol. 88. Springer. ISBN 9783540785620.
{{cite book}}
: Invalid|ref=harv
(help); Unknown parameter|isbn10=
ignored (help) - Kaul, R. N.; Lyall, Vinod; Kaur, Surjeet (1988). "Semilocal pseudolinearity and efficiency". European Journal of Operational Research. 36 (3). Elsevier Science B.V.: 402–409. doi:10.1016/0377-2217(88)90133-6.
{{cite journal}}
: Invalid|ref=harv
(help); Unknown parameter|month=
ignored (help) - Jeyakumar, V.; Yang, X. Q. (1995). "On characterizing the solution sets of pseudolinear programs". Journal of Optimization Theory and Applications. 87 (3): 747–755. doi:10.1007/BF02192142.
{{cite journal}}
: Invalid|ref=harv
(help); Unknown parameter|month=
ignored (help) - Komlósi, S. (1993). "First and second order characterizations of pseudolinear functions". European Journal of Operational Research. 67 (2). Elsevier Science B.V.: 278–286. doi:10.1016/0377-2217(93)90069-Y.
{{cite journal}}
: Invalid|ref=harv
(help); Unknown parameter|day=
ignored (help); Unknown parameter|month=
ignored (help) - Ansari, Qamrul Hasan; Schaible, Siegfried; Yao, Jen-Chih (1999). "η-Pseudolinearity". Decisions in Economics and Finance. 22 (1–2): 31–39. doi:10.1007/BF02912349.
{{cite journal}}
: Invalid|ref=harv
(help); Unknown parameter|month=
ignored (help) - Giorgi, Giorgio; Rueda, Norma G. (2009). "η-Pseudolinearity and Efficiency" (PDF). International Journal of Optimization: Theory, Methods and Applications. 1 (2): 155–159. ISSN 2070-5565.
{{cite journal}}
: Invalid|ref=harv
(help) - Cambini, Alberto; Martein, Laura (2009). "Qualilinearity and Pseudolinearity". Generalized convexity and optimization: theory and applications. Lecture Notes in Economics and Mathematical Systems. Vol. 616. Springer. pp. 50–57. doi:10.1007/978-3-540-70876-6. ISBN 9783540708759.
{{cite book}}
: Invalid|ref=harv
(help); Unknown parameter|isbn10=
ignored (help)