Pseudolinear function
Appearance
An editor has nominated this article for deletion. You are welcome to participate in the deletion discussion, which will decide whether or not to retain it. |
A pseudolinear function is one that is both pseudoconvex and pseudoconcave.
References
- Rapcsak, T. (1991). "On pseudolinear functions". European Journal of Operational Research. 50 (3): 353–360. doi:10.1016/0377-2217(91)90267-Y. ISSN 0377-2217.
{{cite journal}}
: Invalid|ref=harv
(help); Unknown parameter|day=
ignored (help); Unknown parameter|month=
ignored (help)
Further reading
- Chew, Kim Lin; Choo, Eng Ung (1984). "Pseudolinearity and efficiency". Mathematical Programming. 28 (2): 226–239. doi:10.1007/BF02612363.
{{cite journal}}
: Invalid|ref=harv
(help) - Mishra, Shashi Kant; Giorgi, Giorgio (2008). "η-Pseudolinearity: Invexity and Generalized Monotonicity". Invexity and optimization. Nonconvex optimization and its applications. Vol. 88. Springer. ISBN 9783540785620.
{{cite book}}
: Invalid|ref=harv
(help); Unknown parameter|isbn10=
ignored (help) - Kaul, R. N.; Lyall, Vinod; Kaur, Surjeet (1988). "Semilocal pseudolinearity and efficiency". European Journal of Operational Research. 36 (3). Elsevier Science B.V.: 402–409. doi:10.1016/0377-2217(88)90133-6.
{{cite journal}}
: Invalid|ref=harv
(help); Unknown parameter|month=
ignored (help) - Jeyakumar, V.; Yang, X. Q. (1995). "On characterizing the solution sets of pseudolinear programs". Journal of Optimization Theory and Applications. 87 (3): 747–755. doi:10.1007/BF02192142.
{{cite journal}}
: Invalid|ref=harv
(help); Unknown parameter|month=
ignored (help) - Komlósi, S. (1993). "First and second order characterizations of pseudolinear functions". European Journal of Operational Research. 67 (2). Elsevier Science B.V.: 278–286. doi:10.1016/0377-2217(93)90069-Y.
{{cite journal}}
: Invalid|ref=harv
(help); Unknown parameter|day=
ignored (help); Unknown parameter|month=
ignored (help)