APMonitor
Appearance
File:APMonitor logo.jpg | |
Developer(s) | APMonitor |
---|---|
Stable release | v0.1.0
|
Operating system | Cross-platform |
Type | Technical computing |
License | Proprietary |
Website | APMonitor product page |
APMonitor, or "Advanced Process Monitor", is a modeling language for differential and algebraic (DAE) equations[1]. It is used for describing and solving representations of physical systems in the form of implicit DAE models. APMonitor is suited for large-scale problems and allows solutions of dynamic simulation[2], moving horizon estimation[3], and nonlinear control[4]. APMonitor does not solve the problems directly, but calls appropriate external solvers.
Example models in APMonitor language
Direct current (DC) motor
Model motor
Parameters
! motor parameters (dc motor)
v = 36 ! input voltage to the motor (volts)
rm = 0.1 ! motor resistance (ohms)
lm = 0.01 ! motor inductance (henrys)
kb = 6.5e-4 ! back emf constant (volt·s/rad)
kt = 0.1 ! torque constant (N·m/a)
jm = 1.0e-4 ! rotor inertia (kg m²)
bm = 1.0e-5 ! mechanical damping (linear model of friction: bm * dth)
! load parameters
jl = 1000*jm ! load inertia (1000 times the rotor)
bl = 1.0e-3 ! load damping (friction)
k = 1.0e2 ! spring constant for motor shaft to load
b = 0.1 ! spring damping for motor shaft to load
End Parameters
Variables
i = 0 ! motor electrical current (amperes)
dth_m = 0 ! rotor angular velocity sometimes called omega (radians/sec)
th_m = 0 ! rotor angle, theta (radians)
dth_l = 0 ! wheel angular velocity (rad/s)
th_l = 0 ! wheel angle (radians)
End Variables
Equations
lm*$i - v = -rm*i - kb *$th_m
jm*$dth_m = kt*i - (bm+b)*$th_m - k*th_m + b *$th_l + k*th_l
jl*$dth_l = b *$th_m + k*th_m - (b+bl)*$th_l - k*th_l
dth_m = $th_m
dth_l = $th_l
End Equations
End Model
Blood glucose response of an insulin dependent patient
! Model source:
! A. Roy and R.S. Parker. “Dynamic Modeling of Free Fatty
! Acids, Glucose, and Insulin: An Extended Minimal Model,”
! Diabetes Technology and Therapeutics 8(6), 617-626, 2006.
Model human
Parameters
p1 = 0.068 ! 1/min
p2 = 0.037 ! 1/min
p3 = 0.000012 ! 1/min
p4 = 1.3 ! mL/(min·µU)
p5 = 0.000568 ! 1/mL
p6 = 0.00006 ! 1/(min·µmol)
p7 = 0.03 ! 1/min
p8 = 4.5 ! mL/(min·µU)
k1 = 0.02 ! 1/min
k2 = 0.03 ! 1/min
pF2 = 0.17 ! 1/min
pF3 = 0.00001 ! 1/min
n = 0.142 ! 1/min
VolG = 117 ! dL
VolF = 11.7 ! L
! basal parameters for Type-I diabetic
Ib = 0 ! Insulin (µU/mL)
Xb = 0 ! Remote insulin (µU/mL)
Gb = 98 ! Blood Glucose (mg/dL)
Yb = 0 ! Insulin for Lipogenesis (µU/mL)
Fb = 380 ! Plasma Free Fatty Acid (µmol/L)
Zb = 380 ! Remote Free Fatty Acid (µmol/L)
! insulin infusion rate
u1 = 3 ! µU/min
! glucose uptake rate
u2 = 300 ! mg/min
! external lipid infusion
u3 = 0 ! mg/min
End Parameters
Intermediates
p9 = 0.00021 * exp(-0.0055*G) ! dL/(min*mg)
End Intermediates
Variables
I = Ib
X = Xb
G = Gb
Y = Yb
F = Fb
Z = Zb
End Variables
Equations
! Insulin dynamics
$I = -n*I + p5*u1
! Remote insulin compartment dynamics
$X = -p2*X + p3*I
! Glucose dynamics
$G = -p1*G - p4*X*G + p6*G*Z + p1*Gb - p6*Gb*Zb + u2/VolG
! Insulin dynamics for lipogenesis
$Y = -pF2*Y + pF3*I
! Plasma Free Fatty Acid (FFA) dynamics
$F = -p7*(F-Fb) - p8*Y*F + p9 * (F*G-Fb*Gb) + u3/VolF
! Remote FFA dynamics
$Z = -k2*(Z-Zb) + k1*(F-Fb)
End Equations
End Model
Pendulum motion
Model pendulum
Parameters
m = 1
g = 9.81
s = 1
End Parameters
Variables
x = 0
y = -s
v = 1
w = 0
lam = m*(1+s*g)/2*s^2
End Variables
Equations
x^2 + y^2 = s^2
$x = v
$y = w
m*$v = -2*x*lam
m*$w = -m*g - 2*y*lam
End Equations
End Model
See also
References
- ^ Fourer, R. (2000). "Nonlinear Programming Frequently Asked Questions". Optimization Technology Center of Northwestern University and Argonne National Laboratory.
- ^ Hedengren, J. (2008). "A Nonlinear Model Library for Dynamics and Control" (PDF). CACHE (Computer Aids for Chemical Engineering) News.
- ^ Spivey, B. (2009). "Monitoring of Process Fouling Using First-Principles Modeling and Moving Horizon Estimation". Proc. Applications of Computer Algebra (ACA) Conference.
- ^ Ramlal, J. (2007). "Moving Horizon Estimation for an Industrial Gas Phase Polymerization Reactor" (PDF). IFAC Symposium on Nonlinear Control Systems Design (NOLCOS).
External links
- APMonitor home page
- APMonitor documentation
- Online solution engine with IPOPT
- Comparison of popular modeling language syntax
- MATLAB interface to APMonitor by Ben Spivey at the University of Texas at Austin