Jacobi iteration method is generalized to complex Hermitian matrices .
Derivation
The complex unitary matrices
R
p
q
{\displaystyle R_{pq}}
can be used for Jacobi iteration of complex Hermitian matrices in order to find a numerical estimation of their eigenvectors and eigenvalues simultaneously.
R
p
q
{\displaystyle R_{pq}}
are defined as:
(
R
p
q
)
m
,
n
=
δ
m
,
n
m
,
n
≠
p
,
q
,
(
R
p
q
)
p
,
p
=
+
1
2
e
−
i
θ
,
(
R
p
q
)
q
,
p
=
+
1
2
e
−
i
θ
,
(
R
p
q
)
p
,
q
=
−
1
2
e
+
i
θ
,
(
R
p
q
)
q
,
q
=
+
1
2
e
+
i
θ
{\displaystyle {\begin{array}{clrcl}(R_{pq})_{m,n}&=&&\delta _{m,n}&\qquad m,n\neq p,q,\\\\(R_{pq})_{p,p}&=&&{\frac {+1}{\sqrt {2}}}e^{-i\theta },&\\\\(R_{pq})_{q,p}&=&&{\frac {+1}{\sqrt {2}}}e^{-i\theta },&\\\\(R_{pq})_{p,q}&=&&{\frac {-1}{\sqrt {2}}}e^{+i\theta },&\\\\(R_{pq})_{q,q}&=&&{\frac {+1}{\sqrt {2}}}e^{+i\theta }&\end{array}}}
Each rotation matrix,
R
p
q
{\displaystyle R_{pq}}
, will modify only the
p
{\displaystyle p}
th and
q
{\displaystyle q}
th rows or columns of a matrix
M
{\displaystyle M}
if it is applied from left or right, respectively:
(
R
p
q
M
)
m
,
n
=
{
M
m
,
n
m
≠
p
,
q
1
2
(
M
p
,
n
e
−
i
θ
−
M
q
,
n
e
+
i
θ
)
m
=
p
1
2
(
M
p
,
n
e
−
i
θ
+
M
q
,
n
e
+
i
θ
)
m
=
q
}
(
M
R
p
q
†
)
m
,
n
=
{
M
m
,
n
n
≠
p
,
q
1
2
(
M
p
,
n
e
+
i
θ
−
M
q
,
n
e
−
i
θ
)
n
=
p
1
2
(
M
p
,
n
e
+
i
θ
+
M
q
,
n
e
+
i
θ
)
n
=
q
}
{\displaystyle {\begin{array}{clrcl}(R_{pq}M)_{m,n}&=&\left\{{\begin{array}{clrcl}M_{m,n}\qquad &m\neq &p,q\\{\frac {1}{\sqrt {2}}}(M_{p,n}e^{-i\theta }-M_{q,n}e^{+i\theta })\qquad &m=&p\\{\frac {1}{\sqrt {2}}}(M_{p,n}e^{-i\theta }+M_{q,n}e^{+i\theta })\qquad &m=&q\end{array}}\right\}\\(MR_{pq}^{\dagger })_{m,n}&=&\left\{{\begin{array}{clrcl}M_{m,n}\qquad &n\neq &p,q\\{\frac {1}{\sqrt {2}}}(M_{p,n}e^{+i\theta }-M_{q,n}e^{-i\theta })\qquad &n=&p\\{\frac {1}{\sqrt {2}}}(M_{p,n}e^{+i\theta }+M_{q,n}e^{+i\theta })\qquad &n=&q\end{array}}\right\}\end{array}}}
A Hermitian matrix ,
M
{\displaystyle M}
is defined by the conjugate transpose symmetry property:
M
†
=
M
⇔
M
i
,
j
=
M
j
,
i
∗
{\displaystyle M^{\dagger }=M\ \Leftrightarrow \ M_{i,j}=M_{j,i}^{*}}
By definition, the complex conjugate of a complex unitary rotation matrix ,
R
{\displaystyle R}
is its inverse and also a complex unitary rotation matrix :
R
p
q
†
=
R
p
q
−
1
⇒
R
p
q
†
†
=
R
p
q
−
1
†
=
R
p
q
−
1
−
1
=
R
p
q
.
{\displaystyle {\begin{array}{clrcl}&&R_{pq}^{\dagger }&=&R_{pq}^{-1}\\\\&\Rightarrow \ &R_{pq}^{\dagger ^{\dagger }}&=&R_{pq}^{-1^{\dagger }}=R_{pq}^{-1^{-1}}=R_{pq}.\end{array}}}
Hence, the complex equivalent Givens transformation
T
{\displaystyle T}
of a Hermitian matrix
M
{\displaystyle M}
is also a Hermitian matrix similar to
M
{\displaystyle M}
:
T
≡
R
p
q
M
R
p
q
†
,
T
†
=
(
R
p
q
M
R
p
q
†
)
†
=
R
p
q
†
†
M
†
R
p
q
†
=
R
p
q
M
R
p
q
†
=
T
{\displaystyle {\begin{array}{clrcl}T&\equiv &R_{pq}MR_{pq}^{\dagger },&&\\\\T^{\dagger }&=&(R_{pq}MR_{pq}^{\dagger })^{\dagger }&=&R_{pq}^{\dagger ^{\dagger }}M^{\dagger }R_{pq}^{\dagger }=R_{pq}MR_{pq}^{\dagger }=T\end{array}}}
The elements of
T
{\displaystyle T}
can be calculated by the relations above. The important elements for the Jacobi iteration are the following four:
T
p
,
p
=
M
p
,
q
−
R
e
{
M
p
,
q
e
−
2
i
θ
}
,
T
p
,
q
=
M
p
,
p
−
M
q
,
q
2
+
i
I
m
{
M
p
,
q
e
−
2
i
θ
}
,
T
q
,
p
=
M
p
,
p
+
M
q
,
q
2
−
i
I
m
{
M
p
,
q
e
−
2
i
θ
}
,
T
q
,
q
=
M
p
,
q
+
R
e
{
M
p
,
q
e
−
2
i
θ
}
.
{\displaystyle {\begin{array}{clrcl}T_{p,p}&=&&M_{p,q}&-\ \ \ Re\{M_{p,q}e^{-2i\theta }\},\\\\T_{p,q}&=&&{\frac {M_{p,p}-M_{q,q}}{2}}&+\ i\ Im\{M_{p,q}e^{-2i\theta }\},\\\\T_{q,p}&=&&{\frac {M_{p,p}+M_{q,q}}{2}}&-\ i\ Im\{M_{p,q}e^{-2i\theta }\},\\\\T_{q,q}&=&&M_{p,q}&+\ \ \ Re\{M_{p,q}e^{-2i\theta }\}.\end{array}}}
Each Jacobi iteration with
R
p
q
J
{\displaystyle R_{pq}^{J}}
generates a transformed matrix,
T
J
{\displaystyle T^{J}}
, with
T
p
,
q
J
=
0
{\displaystyle T_{p,q}^{J}=0}
. The rotation matrix
R
p
q
J
{\displaystyle R_{pq}^{J}}
is defined as a product of two complex unitary rotation matrices.
R
p
q
J
≡
R
p
q
(
θ
2
)
R
p
q
(
θ
1
)
,
with
θ
1
≡
π
−
2
i
ϕ
1
4
and
θ
2
≡
ϕ
2
2
,
{\displaystyle {\begin{array}{clrcl}R_{pq}^{J}&\equiv &R_{pq}(\theta _{2})\,R_{pq}(\theta _{1}),\ &{\text{ with}}&\\\\\theta _{1}&\equiv &{\frac {\pi -2i\phi _{1}}{4}}\ &{\text{ and}}&\\\\\theta _{2}&\equiv &{\frac {\phi _{2}}{2}},\ &&\end{array}}}
where the phase terms,
ϕ
1
{\displaystyle \phi _{1}}
and
ϕ
2
{\displaystyle \phi _{2}}
are given by:
tan
ϕ
1
=
I
m
{
M
p
,
q
}
R
e
{
M
p
,
q
}
,
tan
ϕ
2
=
2
M
p
,
q
M
p
,
p
−
M
q
,
q
.
{\displaystyle {\begin{array}{clrcl}\tan {\phi _{1}}&=&{\frac {Im\{M_{p,q}\}}{Re\{M_{p,q}\}}},\\\\\tan {\phi _{2}}&=&{\frac {2M_{p,q}}{M_{p,p}-M_{q,q}}}.\end{array}}}
Finally, it is important to note that the product of two complex rotation matrices for given angles
θ
1
{\displaystyle \theta _{1}}
and
θ
2
{\displaystyle \theta _{2}}
cannot be transformed into a single complex unitary rotation matrix
R
p
q
(
θ
)
{\displaystyle R_{pq}(\theta )}
. The product of two complex rotation matrices are given by:
[
R
p
q
(
θ
2
)
R
p
q
(
θ
1
)
]
m
,
n
=
{
δ
m
,
n
m
,
n
≠
p
,
q
−
i
e
−
i
θ
1
sin
θ
2
m
,
n
=
p
,
p
−
i
e
+
i
θ
1
cos
θ
2
m
,
n
=
p
,
q
e
−
i
θ
1
cos
θ
2
m
,
n
=
q
,
p
+
i
e
+
i
θ
1
sin
θ
2
m
,
n
=
q
,
q
}
{\displaystyle {\begin{array}{clrcl}\left[R_{pq}(\theta _{2})\,R_{pq}(\theta _{1})\right]_{m,n}=\left\{{\begin{array}{clrcl}&\delta _{m,n}&m,n&\neq &p,q\\&-i\,e^{-i\theta _{1}}\,\sin {\theta _{2}}&m,n&=&p,p\\&-i\,e^{+i\theta _{1}}\,\cos {\theta _{2}}&m,n&=&p,q\\&e^{-i\theta _{1}}\,\cos {\theta _{2}}&m,n&=&q,p\\&+i\,e^{+i\theta _{1}}\,\sin {\theta _{2}}&m,n&=&q,q\end{array}}\right\}\end{array}}}
Key concepts Problems Hardware Software