From Wikipedia, the free encyclopedia
Jacobi iteration method is generalized to complex Hermitian matrices .
Derivation
The complex unitary matrices
R
p
q
{\displaystyle R_{pq}}
can be used for Jacobi iteration of complex Hermitian matrices in order to find a numerical estimation of their eigenvectors and eigenvalues simultaneously.
R
p
q
{\displaystyle R_{pq}}
are defined as:
(
R
p
q
)
m
,
n
=
δ
m
,
n
m
,
n
≠
p
,
q
,
(
R
p
q
)
p
,
p
=
+
1
2
e
−
i
θ
,
(
R
p
q
)
q
,
p
=
+
1
2
e
−
i
θ
,
(
R
p
q
)
p
,
q
=
−
1
2
e
+
i
θ
,
(
R
p
q
)
q
,
q
=
+
1
2
e
+
i
θ
{\displaystyle {\begin{array}{clrcl}(R_{pq})_{m,n}&=&&\delta _{m,n}&\qquad m,n\neq p,q,\\\\(R_{pq})_{p,p}&=&&{\frac {+1}{\sqrt {2}}}e^{-i\theta },&\\\\(R_{pq})_{q,p}&=&&{\frac {+1}{\sqrt {2}}}e^{-i\theta },&\\\\(R_{pq})_{p,q}&=&&{\frac {-1}{\sqrt {2}}}e^{+i\theta },&\\\\(R_{pq})_{q,q}&=&&{\frac {+1}{\sqrt {2}}}e^{+i\theta }&\end{array}}}
Each rotation matrix will modify only the
p
{\displaystyle p}
th and
q
{\displaystyle q}
th rows or columns of a matrix
M
{\displaystyle M}
if it is applied from left or right, respectively:
(
R
p
q
M
)
m
,
n
=
{
M
m
,
n
m
≠
p
,
q
1
2
(
M
p
,
n
e
−
i
θ
−
M
q
,
n
e
+
i
θ
)
m
=
p
1
2
(
M
p
,
n
e
−
i
θ
+
M
q
,
n
e
+
i
θ
)
m
=
q
}
(
M
R
p
q
†
)
m
,
n
=
{
M
m
,
n
n
≠
p
,
q
1
2
(
M
p
,
n
e
+
i
θ
−
M
q
,
n
e
−
i
θ
)
n
=
p
1
2
(
M
p
,
n
e
+
i
θ
+
M
q
,
n
e
+
i
θ
)
n
=
q
}
{\displaystyle {\begin{array}{clrcl}(R_{pq}M)_{m,n}&=&\left\{{\begin{array}{clrcl}M_{m,n}\qquad &m\neq &p,q\\{\frac {1}{\sqrt {2}}}(M_{p,n}e^{-i\theta }-M_{q,n}e^{+i\theta })\qquad &m=&p\\{\frac {1}{\sqrt {2}}}(M_{p,n}e^{-i\theta }+M_{q,n}e^{+i\theta })\qquad &m=&q\end{array}}\right\}\\(MR_{pq}^{\dagger })_{m,n}&=&\left\{{\begin{array}{clrcl}M_{m,n}\qquad &n\neq &p,q\\{\frac {1}{\sqrt {2}}}(M_{p,n}e^{+i\theta }-M_{q,n}e^{-i\theta })\qquad &n=&p\\{\frac {1}{\sqrt {2}}}(M_{p,n}e^{+i\theta }+M_{q,n}e^{+i\theta })\qquad &n=&q\end{array}}\right\}\end{array}}}
A Hermitian matrix ,
M
{\displaystyle M}
is defined by the conjugate transpose symmetry property:
M
†
=
M
⇔
M
i
,
j
=
M
j
,
i
∗
{\displaystyle M^{\dagger }=M\ \Leftrightarrow \ M_{i,j}=M_{j,i}^{*}}
By definition, the complex conjugate of a complex unitary rotation matrix ,
R
{\displaystyle R}
is its inverse and also a complex unitary rotation matrix :
R
p
q
†
=
R
p
q
−
1
⇒
R
p
q
†
†
=
R
p
q
−
1
†
=
R
p
q
−
1
−
1
=
R
p
q
.
{\displaystyle {\begin{array}{clrcl}&&R_{pq}^{\dagger }&=&R_{pq}^{-1}\\\\&\Rightarrow \ &R_{pq}^{\dagger ^{\dagger }}&=&R_{pq}^{-1^{\dagger }}=R_{pq}^{-1^{-1}}=R_{pq}.\end{array}}}
Hence, the complex equivalent Givens transformation
T
{\displaystyle T}
of a Hermitian matrix
M
{\displaystyle M}
is also a Hermitian matrix similar to
M
{\displaystyle M}
:
T
≡
R
p
q
M
R
p
q
†
,
T
†
=
(
R
p
q
M
R
p
q
†
)
†
=
R
p
q
†
†
M
†
R
p
q
†
=
R
p
q
M
R
p
q
†
=
T
{\displaystyle {\begin{array}{clrcl}T&\equiv &R_{pq}MR_{pq}^{\dagger },&&\\\\T^{\dagger }&=&(R_{pq}MR_{pq}^{\dagger })^{\dagger }&=&R_{pq}^{\dagger ^{\dagger }}M^{\dagger }R_{pq}^{\dagger }=R_{pq}MR_{pq}^{\dagger }=T\end{array}}}
The elements of
T
{\displaystyle T}
can be calculated by the relations above. The important elements for the Jacobi iteration are the following four:
T
p
,
p
=
M
p
,
q
+
M
p
,
q
2
−
R
e
{
M
p
,
q
e
−
2
i
θ
}
,
T
p
,
q
=
M
p
,
p
−
M
q
,
q
2
+
i
I
m
{
M
p
,
q
e
−
2
i
θ
}
,
T
q
,
p
=
M
p
,
p
+
M
q
,
q
2
−
i
I
m
{
M
p
,
q
e
−
2
i
θ
}
,
T
q
,
q
=
M
p
,
q
+
M
p
,
q
2
+
R
e
{
M
p
,
q
e
−
2
i
θ
}
.
{\displaystyle {\begin{array}{clrcl}T_{p,p}&=&{\frac {M_{p,q}+M_{p,q}}{2}}&-&&&Re\{M_{p,q}e^{-2i\theta }\},\\T_{p,q}&=&{\frac {M_{p,p}-M_{q,q}}{2}}&+&&i&Im\{M_{p,q}e^{-2i\theta }\},\\T_{q,p}&=&{\frac {M_{p,p}+M_{q,q}}{2}}&-&&i&Im\{M_{p,q}e^{-2i\theta }\},\\T_{q,q}&=&{\frac {M_{p,q}+M_{p,q}}{2}}&+&&&Re\{M_{p,q}e^{-2i\theta }\}.\end{array}}}
Key concepts Problems Hardware Software