Scale (descriptive set theory)
![]() | This article or section is in a state of significant expansion or restructuring. You are welcome to assist in its construction by editing it as well. If this article or section has not been edited in several days, please remove this template. If you are the editor who added this template and you are actively editing, please be sure to replace this template with {{in use}} during the active editing session. Click on the link for template parameters to use.
This article was last edited by ClueBot (talk | contribs) 14 years ago. (Update timer) |
In the mathematical discipline of descriptive set theory, a scale is a certain kind of object defined on a set of points in some Polish space (for example, a scale might be defined on a set of real numbers). Scales were originally isolated as a concept in the theory of uniformization [1], but have found wide applicability in descriptive set theory, with applications such as establishing bounds on the possible lengths of wellorderings of a given complexity, and showing (under certain assumptions) that there are largest countable sets of certain complexities.
Motivation
Scales arose from the question of finding a definable uniformization for a relation of a given complexity. That is, given a relation R, and supposing that for every x there is some y such that xRy, we would like an actual definable function f such that f(x) picks out a particular value y for which xRy.
If a relation — say, between points in the Baire space (which for purposes of descriptive set theory is more or less equivalent to the real numbers) — is "sufficiently definable", then it will have a so-called Suslin representation, a representation in terms of trees. A Suslin representation for a relation R in turn allows giving a definable uniformization for R (with the tree as a parameter to the definition); given x, it suffices to follow the leftmost branch of the tree of attempts to find a y such that xRy.[citation needed]
Scales are closely related to Suslin representations. In fact, if a subset of the Baire space has a κ-scale (that is, a scale all of whose norms take values less than κ; see the formal definition below), then it also has a κ-Suslin representation (that is, it can be represented by the infinite branches through a tree on κ×ω). Conversely, if a set has a κ-Suslin representation, then it has a κω-scale.[2]
The advantage of scales over unadorned Suslin representations is that arguments involving determinacy can use scales on simpler pointsets to obtain scales on more complicated ones, via arguments initiated by Yiannis N. Moschovakis.
Formal definition
Given a pointset A contained in some product space
where each Xk is either the Baire space or a countably infinite discrete set, we say that a norm on A is a map from A into the ordinal numbers. Each norm has an associated prewellordering, where one element of A precedes another element if the norm of the first is less than the norm of the second.
A scale on A is a countably infinite collection of norms
with the following properties:
- If the sequence xi is such that
- xi is an element of A for each natural number i, and
- xi converges to an element xin the product space X, and
- for each natural number n there is an ordinal λn such that φn(xi)=λn for all sufficiently large i, then
- x is an element of A, and
- for each n, φn(x)≤λn.[3]
By itself, at least granted the axiom of choice, the existence of a scale on a pointset is trivial, as A can be wellordered and each φn can simply enumerate A. To make the concept useful, a definability criterion must be imposed on the norms (individually and together).
Applications
- This section is yet to be written
Scale property
The scale property is a strengthening of the prewellordering property. For pointclasses of a certain form, it implies that relations in the given pointclass have a uniformization that is also in the pointclass.
Periodicity
- This section is yet to be written
Notes
References
- Moschovakis, Yiannis N. (1980). Descriptive Set Theory. North Holland. ISBN 0-444-70199-0.
- Kechris, Alexander S.; Moschovakis, Yiannis N. (2008). "Notes on the theory of scales". In Kechris, Alexander S.; Löwe, Benedikt; Steel, John R. (eds.). Games, Scales and Suslin Cardinals: The Cabal Seminar, Volume I. Cambridge University Press. pp. 28–74. ISBN 978-0-521-89951-2.