Jump to content

Non-coding DNA

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by 89.251.107.8 (talk) at 16:16, 29 August 2010 (Junk DNA: 1% => 0.1% (explanation on discussion page)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In genetics, noncoding DNA describes components of an organism's DNA sequences that do not encode for protein sequences. In many eukaryotes, a large percentage of an organism's total genome size is noncoding DNA, although the amount of noncoding DNA, and the proportion of coding versus noncoding DNA varies greatly between species.

Much of this DNA has no known biological function and is sometimes referred to as "Junk DNA". However, many types of noncoding DNA sequences do have known biological functions, including the transcriptional and translational regulation of protein-coding sequences. Other noncoding sequences have likely but as-yet undetermined function, an inference from high levels of homology and conservation seen in sequences that do not encode proteins but appear to be under heavy selective pressure.

Fraction of noncoding genomic DNA

The amount of total genomic DNA varies widely between organisms, and the proportion of coding and noncoding DNA within these genomes varies greatly as well. More than 98% of the human genome does not encode protein sequences, including most sequences within introns and most intergenic DNA.[1]

While overall genome size, and by extension the amount of noncoding DNA, are correlated to organism complexity, there are many exceptions. For example, the genome of the unicellular Polychaos dubium (formerly known as Amoeba dubia) has been reported to contain more than 200 times the amount of DNA in humans.[2] The pufferfish Takifugu rubripes genome is only about one eighth the size of the human genome, yet seems to have a comparable number of genes; approximately 90% of the Takifugu genome is noncoding DNA[1] and most of the genome size difference appears to lie in the noncoding DNA. The extensive variation in nuclear genome size among eukaryotic species is known as the C-value enigma or C-value paradox.[3]

About 80% of the nucleotide bases in the human genome may be transcribed,[4] but transcription does not necessarily imply function.[5]

Types of noncoding DNA sequences

Noncoding functional RNA

Noncoding RNAs are functional RNA molecules that are not translated into protein. Examples of noncoding RNA include ribosomal RNA, transfer RNA, Piwi-interacting RNA and microRNA.

MicroRNAs are predicted to control the translational activity of approximately 30% of all protein-coding genes in mammals and may be vital components in the progression or treatment of various diseases including cancer, cardiovascular disease, and the immune system response to infection.[6]

Cis-regulatory elements

Cis-regulatory elements are sequences that control the transcription of a gene. Cis-elements may be located in 5' or 3' untranslated regions or within introns. Promoters facilitate the transcription of a particular gene and are typically upstream of the coding region.

Enhancer sequences may exert very distant effects on the transcription levels of genes.[7]

Introns

Introns are non-coding sections of a gene, transcribed into the precursor mRNA sequence, but ultimately removed by RNA splicing during the processing to mature messenger RNA. Many introns appear to be mobile genetic elements.[8]

Studies of group I introns from Tetrahymena indicate that some introns appear to be selfish genetic elements, neutral to the host because they remove themselves from flanking exons during RNA processing and do not produce an expression bias between alleles with and without the intron.[8] Some introns do appear to have significant biological function, possibly through ribozyme functionality that may regulate tRNA and rRNA activity as well as protein-coding gene expression, evident in hosts that have become dependent on such introns over long periods of time; for example, the trnL-intron is found in all green plants and appears to have been vertically inherited for several billions of years, including more than a billion years within chloroplasts and an additional 2–3 billion years prior in the cyanobacterial ancestors of chloroplasts.[8]

Pseudogenes

Pseudogenes are DNA sequences, related to known genes, that have lost their protein-coding ability or are otherwise no longer expressed in the cell. Pseudogenes arise from retrotransposition or genomic duplication of functional genes, and become "genomic fossils" that are nonfuctional due to mutations that prevent the transcription of the gene, such as within the gene promoter region, or fatally alter the translation of the gene, such as premature stop codons or frameshifts.[9] Pseudogenes resulting from the retrotransposition of an RNA intermediate are known as processed pseudogenes; pseudogenes that arise from the genomic remains of duplicated genes or residues of inactivated are nonprocessed pseudogenes.[9]

While Dollo's Law suggests that the loss of function in pseudogenes is likely permanent, silenced genes may actually retain function for several million years and can be "reactivated" into protein-coding sequences[10] and a substantial number of pseudogenes are actively transcribed.[9] Because pseudogenes are presumed to evolve without evolutionary constraint, they can serve as a useful model of the type and frequencies various spontaneous genetic mutations.[11]

Repeat sequences, transposons and viral elements

Transposons and retrotransposons are mobile genetic elements. Retrotransposon repeated sequences, which include long interspersed nuclear elements (LINEs) and short interspersed nuclear elements (SINEs), account for a large proportion of the genomic sequences in many species. Alu sequences, classified as a short interspersed nuclear element, are the most abundant mobile elements in the human genome. Some examples have been found of SINEs exerting transcriptional control of some protein-encoding genes.[12][13][14]

Endogenous retrovirus sequences are the product of reverse transcription of retrovirus genomes into the genomes of germ cells. Mutation within these retro-transcribed sequences can inactivate the viral genome.

Over 8% of the human genome is made up of (mostly decayed) endogenous retrovirus sequences, as part of the over 42% fraction that is recognizably derived of retrotransposons, while another 3% can be identified to be the remains of DNA transposons. Much of the remaining half of the genome that is currently without an explained origin is expected to have found its origin in transposable elements that were active so long ago (> 200 million years) that random mutations have rendered them unrecognizable.[15] Genome size variation in at least two kinds of plants is mostly the result of retrotransposon sequences.[16]

Telomeres

Telomeres are regions of repetitive DNA at the end of a chromosome, which provide protection from chromosomal deterioration during DNA replication.

Functions of noncoding DNA

Many noncoding DNA sequences have very important biological functions. Comparative genomics reveals that some regions of noncoding DNA are highly conserved, sometimes on time-scales representing hundreds of millions of years, implying that these noncoding regions are under strong evolutionary pressure and positive selection.[17] For example, in the genomes of humans and mice, which diverged from a common ancestor 65–75 million years ago, protein-coding DNA sequences account for only about 20% of conserved DNA, with the remaining majority of conserved DNA represented in noncoding regions.[18] Linkage mapping often identifies chromosomal regions associated with a disease with no evidence of functional coding variants of genes within the region, suggesting that disease-causing genetic variants lie in the noncoding DNA.[18]

Some noncoding DNA sequences are genetic "switches" that do not encode proteins, but do regulate when and where genes are expressed.[19] According to a comparative study of over 300 prokaryotic and over 30 eukaryotic genomes,[20] eukaryotes appear to require a minimum amount of non-coding DNA. This minimum amount can be predicted using a growth model for regulatory genetic networks, implying that it is required for regulatory purposes. In humans the predicted minimum is about 5% of the total genome.

Some specific sequences of noncoding DNA may be features essential to chromosome structure, centromere function and homolog recognition in meiosis.[21]

Some noncoding DNA sequences determine the expression levels of various genes.[22] Other sequences of noncoding DNA determine where transcription factors attach.[22]

Noncoding DNA and evolution

Shared sequences of apparently non-functional DNA are a major line of evidence for common descent.[23]

Pseudogene sequences appear to accumulate mutations more rapidly than coding sequences due to a loss of selective pressure.[11] This allows for the creation of mutant alleles that incorporate new functions that may be favored by natural selection; thus, pseudogenes can serve as raw material for evolution and can be considered "protogenes".[24]

Junk DNA

Junk DNA, a term that was introduced in 1972 by Susumu Ohno,[25] was a provisional label for the portions of a genome sequence for which no discernible function had been identified. According to a 1980 review in Nature by Leslie Orgel and Francis Crick, junk DNA has "little specificity and conveys little or no selective advantage to the organism".[26] The term is currently, however, a somewhat outdated concept, being used mainly in popular science and in a colloquial way in scientific publications, and may have slowed research into the biological functions of noncoding DNA.[27] Several lines of evidence indicate that many "junk DNA" sequences have likely but unidentified functional activity, and other sequences may have had functions in the past.[28]

Still, a large amount of sequence in these genomes falls under no existing classification other than "junk". For example, one experiment removed 0.1% of the mouse genome with no detectable effect on the phenotype.[29] This result suggests that the removed DNA was largely nonfunctional. In addition, these sequences are enriched for the heterochromatic histone modification H3K9me3 [30].

See also

References

  1. ^ a b Elgar G, Vavouri T (2008). "Tuning in to the signals: noncoding sequence conservation in vertebrate genomes". Trends Genet. 24 (7): 344–52. doi:10.1016/j.tig.2008.04.005. PMID 18514361. {{cite journal}}: Unknown parameter |month= ignored (help)
  2. ^ Gregory TR, Hebert PD (1999). "The modulation of DNA content: proximate causes and ultimate consequences". Genome Res. 9 (4): 317–24. PMID 10207154. {{cite journal}}: Unknown parameter |month= ignored (help)
  3. ^ Wahls, W.P.; et al. (1990). "Hypervariable minisatellite DNA is a hotspot for homologous recombination in human cells". Cell. 60 (1): 95–103. PMID 2295091. {{cite journal}}: Explicit use of et al. in: |author= (help)
  4. ^ Pennisi, Elizabeth (2007). "DNA Study Forces Rethink of What It Means to Be a Gene". Science. 316 (5831): 1556–7. doi:10.1126/science.316.5831.1556. PMID 17569836.
  5. ^ Struhl, Kevin (2007). "Transcriptional noise and the fidelity of initiation by RNA polymerase II". Nature Structural & Molecular Biology. 14: 103–105. doi:10.1038/nsmb0207-103. PMID 17277804.
  6. ^ Li M, Marin-Muller C, Bharadwaj U, Chow KH, Yao Q, Chen C (2009). "MicroRNAs: control and loss of control in human physiology and disease". World J Surg. 33 (4): 667–84. doi:10.1007/s00268-008-9836-x. PMID 19030926. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  7. ^ Visel A, Rubin EM, Pennacchio LA (2009). "Genomic views of distant-acting enhancers". Nature. 461 (7261): 199–205. doi:10.1038/nature08451. PMID 19741700. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  8. ^ a b c Nielsen H, Johansen SD (2009). "Group I introns: Moving in new directions". RNA Biol. 6 (4): 375–83. doi:10.4161/rna.6.4.9334. PMID 19667762.
  9. ^ a b c Zheng D, Frankish A, Baertsch R; et al. (2007). "Pseudogenes in the ENCODE regions: consensus annotation, analysis of transcription, and evolution". Genome Res. 17 (6): 839–51. doi:10.1101/gr.5586307. PMC 1891343. PMID 17568002. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  10. ^ Marshall CR, Raff EC, Raff RA (1994). "Dollo's law and the death and resurrection of genes". Proc. Natl. Acad. Sci. U.S.A. 91 (25): 12283–7. PMC 45421. PMID 7991619. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  11. ^ a b Petrov DA, Hartl DL (2000). "Pseudogene evolution and natural selection for a compact genome". J. Hered. 91 (3): 221–7. PMID 10833048.
  12. ^ Ponicsan SL, Kugel JF, Goodrich JA (2010). "Genomic gems: SINE RNAs regulate mRNA production". Curr Opin Genet Dev. doi:10.1016/j.gde.2010.01.004. PMID 20176473. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  13. ^ Häsler J, Samuelsson T, Strub K (2007). "Useful 'junk': Alu RNAs in the human transcriptome". Cell. Mol. Life Sci. 64 (14): 1793–800. doi:10.1007/s00018-007-7084-0. PMID 17514354. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  14. ^ Walters RD, Kugel JF, Goodrich JA (2009). "InvAluable junk: the cellular impact and function of Alu and B2 RNAs". IUBMB Life. 61 (8): 831–7. doi:10.1002/iub.227. PMID 19621349. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  15. ^ International Human Genome Sequencing Consortium (2001). "Initial sequencing and analysis of the human genome". Nature. 409 (6822): 879–888. PMID 11237011. {{cite journal}}: Unknown parameter |month= ignored (help)
  16. ^ [1] [2]
  17. ^ Ludwig MZ (2002). "Functional evolution of noncoding DNA". Curr. Opin. Genet. Dev. 12 (6): 634–9. PMID 12433575. {{cite journal}}: Unknown parameter |month= ignored (help)
  18. ^ a b Cobb J, Büsst C, Petrou S, Harrap S, Ellis J (2008). "Searching for functional genetic variants in non-coding DNA". Clin. Exp. Pharmacol. Physiol. 35 (4): 372–5. doi:10.1111/j.1440-1681.2008.04880.x. PMID 18307723. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  19. ^ Carroll, Sean B.; et al. (2008). "Regulating Evolution". Scientific American. 298 (5): 60–67. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)
  20. ^ S. E. Ahnert, T. M. A. Fink and A. Zinovyev (2008). "How much non-coding DNA do eukaryotes require?" (PDF). J Theor. Biol. 252: 587–592. doi:10.1016/j.jtbi.2008.02.005.
  21. ^ Subirana JA, Messeguer X (2010). "The most frequent short sequences in non-coding DNA". Nucleic Acids Res. 38 (4): 1172–81. doi:10.1093/nar/gkp1094. PMC 2831315. PMID 19966278. {{cite journal}}: Unknown parameter |month= ignored (help)
  22. ^ a b Callaway, Ewen (2010). "Junk DNA gets credit for making us who we are". New Scientist. {{cite journal}}: Unknown parameter |month= ignored (help)
  23. ^ "Plagiarized Errors and Molecular Genetics", talkorigins, by Edward E. Max, M.D., Ph.D.
  24. ^ Balakirev ES, Ayala FJ (2003). "Pseudogenes: are they "junk" or functional DNA?". Annu. Rev. Genet. 37: 123–51. doi:10.1146/annurev.genet.37.040103.103949. PMID 14616058.
  25. ^ So much "junk" DNA in our genome, In Evolution of Genetic Systems (1972). H. H. Smith (ed.). Gordon and Breach, New York. pp. 366–370. {{cite book}}: External link in |last= (help); Missing or empty |title= (help); More than one of |author= and |last= specified (help)
  26. ^ Orgel LE, Crick FH (1980). "Selfish DNA: the ultimate parasite". Nature. 284 (5757): 604–7. doi:10.1038/284604a0. PMID 7366731. {{cite journal}}: Unknown parameter |month= ignored (help)
  27. ^ Khajavinia A, Makalowski W (2007). "What is "junk" DNA, and what is it worth?". Scientific American. 296 (5): 104. PMID 17503549. The term "junk DNA" repelled mainstream researchers from studying noncoding genetic material for many years {{cite journal}}: Unknown parameter |month= ignored (help)
  28. ^ Biémont, Christian (2006). "Genetics: Junk DNA as an evolutionary force". Nature. 443: 521. doi:10.1038/443521a.
  29. ^ M.A. Nobrega, Y. Zhu, I. Plajzer-Frick, V. Afzal and E.M. Rubin (2004). "Megabase deletions of gene deserts result in viable mice". Nature. 431 (7011): 988–993. doi:10.1038/nature03022.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  30. ^ Rosenfeld, Jeffrey A; Wang, Zhibin; Zhao, Keji; DeSalle, Rob; Zhang, Michael Q (31 March 2009). "Determination of enriched histone modifications in non-genic portions of the human genome". BMC Genomics. 10 (143). doi:10.1186/1471-2164-10-143. PMID 19335899.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: unflagged free DOI (link)