From Wikipedia, the free encyclopedia
In mathematics, the multivariate Gamma function, Γp(·), is a generalization of the Gamma function. It is useful in multivariate statistics.
It has two equivalent definitions. One is

where S>0 means S is positive-definite. The other one, more useful in practice, is
![{\displaystyle \Gamma _{p}(a)=\pi ^{p(p-1)/4}\prod _{j=1}^{p}\Gamma \left[a+(1-j)/2\right].}](/media/api/rest_v1/media/math/render/svg/4dc9bcc58164ece0de7aef7b0ba2b1a0925a1a04)
From this, we have the recursive relationships:
![{\displaystyle \Gamma _{p}(a)=\pi ^{(p-1)/2}\Gamma (a)\Gamma _{p-1}(a-{\tfrac {1}{2}})=\pi ^{(p-1)/2}\Gamma _{p-1}(a)\Gamma [a+(1-p)/2]}](/media/api/rest_v1/media/math/render/svg/0478e78d8d2bc4658e9682465cf5c2b0375a2416)
Thus



and so on.
References