Kirillov model
Appearance
In mathematics, the Kirillov model, studied by Kirillov (1963), is a realization of a representation of GL2 over a local field on a space of functions on the local field.
If G is the algebraic group GL2 and F is a non-Archimedean local field, and τ is a fixed nontrivial character of the additive group of F and π is an irreducible representation of G(F), then the Kirillov model for π is a representation π on a space of locally constant functions f on F* with compact support in F such that
See also
References
- Kirillov, A. A. (1963). Doklady Akademii Nauk SSSR. 150: 740–743. MR0151552.
{{cite journal}}
: Invalid|ref=harv
(help); Missing or empty|title=
(help); Unknown parameter|trans_title=
ignored (|trans-title=
suggested) (help)CS1 maint: postscript (link) - Jacquet, H.; Langlands, Robert P. (1970). "Automorphic forms on GL(2)" (Document). Lecture Notes in Mathematics, Vol. 114. Berlin, New York: Springer-Verlag. doi:10.1007/BFb0058988. MR0401654.
{{cite document}}
: Invalid|ref=harv
(help); Unknown parameter|series=
ignored (help); Unknown parameter|url=
ignored (help); Unknown parameter|volume=
ignored (help)CS1 maint: postscript (link)