Jump to content

Instance-based learning

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Qwertyus (talk | contribs) at 08:26, 20 April 2010. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In machine learning, instance-based learning or memory-based learning is a family of learning algorithms that, instead of performing explicit generalization, compare new problem instances with instances seen in training, which have been stored in memory. Instance-based learning is a kind of lazy learning.

It is called instance-based because it constructs hypotheses directly from the training instances themselves.[1] This means that the hypothesis complexity can grow with the data.[1]

A simple example of an instance-based learning algorithm is the k-nearest neighbor algorithm. Daelemans and Van den Bosch describe variations of this algorithm for use in natural language processing (NLP), claiming that memory-based learning is both more psychologically realistic than other machine-learning schemes and practically effective.[2]

References

  1. ^ a b Stuart Russell and Peter Norvig (2003). Artificial Intelligence: A Modern Approach, second edition, p. 733. Prentice Hall. ISBN 0-13-080302-2
  2. ^ Walter Daelemans and Antal van den Bosch (2005). Memory-Based Language Processing. Cambridge University Press.