From Wikipedia, the free encyclopedia
(Work on the Lambda-CDM metric)
The FLRW metric with two spatial dimensions suppressed is
d
s
2
=
c
2
d
t
2
−
a
(
t
)
2
d
x
2
{\displaystyle ds^{2}=c^{2}dt^{2}-a(t)^{2}dx^{2}}
Ignoring the effects of radiation in the early universe and assuming k = 0 and w = −1, the Lambda-CDM scale factor is
a
(
t
)
=
[
Ω
m
Ω
v
sinh
2
(
3
2
Ω
v
H
0
t
)
]
1
3
{\displaystyle a(t)=\left[{\frac {\Omega _{m}}{\Omega _{v}}}\sinh ^{2}\left({\frac {3}{2}}{\sqrt {\Omega _{v}}}H_{0}t\right)\right]^{\frac {1}{3}}}
Putting (for reasons that will emerge later)
A
=
[
Ω
m
4
Ω
v
]
1
3
{\displaystyle A=\left[{\frac {\Omega _{m}}{4\Omega _{v}}}\right]^{\frac {1}{3}}}
and
α
=
Ω
v
H
0
{\displaystyle \alpha ={\sqrt {\Omega _{v}}}H_{0}}
,
the Lambda-CDM scale factor may be rewritten as
a
(
t
)
=
A
[
2
sinh
(
3
2
α
t
)
]
2
3
{\displaystyle a(t)=A\left[2\sinh \left({\frac {3}{2}}\alpha t\right)\right]^{\frac {2}{3}}}
a
(
t
)
=
A
[
e
3
2
α
t
−
e
−
3
2
α
t
]
2
3
{\displaystyle a(t)=A\left[e^{{\frac {3}{2}}\alpha t}-e^{-{\frac {3}{2}}\alpha t}\right]^{\frac {2}{3}}}
a
(
t
)
=
A
e
α
t
[
1
−
e
−
3
α
t
]
2
3
{\displaystyle a(t)=Ae^{\alpha t}\left[1-e^{-3\alpha t}\right]^{\frac {2}{3}}}
Formally expanding the binomial and simplifying gives
a
(
t
)
=
A
e
α
t
[
1
−
2
3
e
−
3
α
t
−
1
9
e
−
6
α
t
−
4
81
e
−
9
α
t
−
7
243
e
−
12
α
t
.
.
.
+
-2.1.4.7....(3n-5)
3
n
n
!
e
−
3
n
α
t
−
.
.
.
]
{\displaystyle a(t)=Ae^{\alpha t}\left[1-{\frac {2}{3}}e^{-3\alpha t}-{\frac {1}{9}}e^{-6\alpha t}-{\frac {4}{81}}e^{-9\alpha t}-{\frac {7}{243}}e^{-12\alpha t}...+{\frac {\text{-2.1.4.7....(3n-5)}}{3^{n}n!}}e^{-3n\alpha t}-...\right]}
Best Current Numerical Values
The WMAP five-year report gives
Ω
m
≈
0.279
Ω
v
≈
0.721
H
0
≈
70.1
km
s
−
1
Mp
−
1
≈
0.0717
Ga
−
1
{\displaystyle {\begin{aligned}\Omega _{m}&\approx 0.279\\\Omega _{v}&\approx 0.721\\H_{0}&\approx 70.1\ {\text{km}}\ {\text{s}}^{-1}\ {\text{Mp}}^{-1}\approx 0.0717\ {\text{Ga}}^{-1}\end{aligned}}}
(Mp = megaparsec, Ga = gigayear).
These give
A
=
[
Ω
m
4
Ω
v
]
1
3
≈
1.15
7
{\displaystyle A=\left[{\frac {\Omega _{m}}{4\Omega _{v}}}\right]^{\frac {1}{3}}\approx 1.15_{7}}
and
α
=
Ω
v
H
0
≈
0.0609
Ga
−
1
{\displaystyle \alpha ={\sqrt {\Omega _{v}}}H_{0}\approx 0.0609\ {\text{Ga}}^{-1}}
The path of the light ray satisfies
d
x
/
d
t
=
c
/
a
(
t
)
{\displaystyle dx/dt=c/a(t)}
.