Jump to content

Elliptic gamma function

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by R.e.b. (talk | contribs) at 15:10, 21 March 2010 (lk). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, the elliptic gamma function is a generalization of the q-Gamma function, which is itself the q-analog of the ordinary Gamma function. It is closely related to a function studied by Jackson (1905), and can be expressed in terms of the triple gamma function. It is given by

It obeys several identities:

and

where θ is the q-theta function.

When , it essentially reduces to the infinite q-Pochhammer symbol:

References

  • Jackson, F. H. (1905), "The Basic Gamma-Function and the Elliptic Functions", Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 76 (508), The Royal Society: 127–144, ISSN 0950-1207
  • Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 96 (2nd ed.), Cambridge University Press, ISBN 978-0-521-83357-8, MR2128719