Talk:Statistical model
![]() | Statistics Start‑class | |||||||||
|
Could this be explained for the layman?
statical modelling
b Aswediscussedabovetheproblemofmaininterestforusistoobtainameasureofboththe complexityandthe(useful)informationinadataset.Asinthealgorithmictheorythecomplexity istheprimarynotion,whichthenallowsustode¯nethemoreintricatenotionofinformation.Our planistode¯nethecomplexityintermsoftheshortestcodelengthwhenthedataisencodedwith aclassofmodelsascodes.Intheprevioussectionwesawthatthisleadsintothenoncomputability problemifwelettheclassofmodelsincludethesetofallcomputerprograms,a`model'identi¯ed withacomputerprogram(code)thatgeneratesthegivendata.However,ifweselectasmallerclass thenoncomputabilityproblemcanbeavoidedbutwehavetoovercomeanotherdi±culty:Howare wetode¯netheshortestcodelength?ItseemsthatinordernottofallbacktotheKolmogorov complexitywemustspelloutexactlyhowthedistributionsasmodelsaretobeusedtorestrictthe codingoperations.Inuniversalcodingwedidjustthatbydoingthecodinginapredictiveway,in Lempel-Zivcodebytheindexoftheleafinthetreeofthesegmentsdeterminedbythepastdata,and inContextCodingbyapplyinganarithmeticcodetoeach`next'symbol,conditionedonacontext de¯nedbythealgorithmasafunctionofthepastdata.Hereweadoptadi®erentstrategy:we de¯netheideaofshortestcodelengthinaprobabilisticsense,whichturnsouttosatisfypractical requirements.Todothatwemustbemoreformalaboutmodels.
statical modelling
b Aswediscussedabovetheproblemofmaininterestforusistoobtainameasureofboththe complexityandthe(useful)informationinadataset.Asinthealgorithmictheorythecomplexity istheprimarynotion,whichthenallowsustode¯nethemoreintricatenotionofinformation.Our planistode¯nethecomplexityintermsoftheshortestcodelengthwhenthedataisencodedwith aclassofmodelsascodes.Intheprevioussectionwesawthatthisleadsintothenoncomputability problemifwelettheclassofmodelsincludethesetofallcomputerprograms,a`model'identi¯ed withacomputerprogram(code)thatgeneratesthegivendata.However,ifweselectasmallerclass thenoncomputabilityproblemcanbeavoidedbutwehavetoovercomeanotherdi±culty:Howare wetode¯netheshortestcodelength?ItseemsthatinordernottofallbacktotheKolmogorov complexitywemustspelloutexactlyhowthedistributionsasmodelsaretobeusedtorestrictthe codingoperations.Inuniversalcodingwedidjustthatbydoingthecodinginapredictiveway,in Lempel-Zivcodebytheindexoftheleafinthetreeofthesegmentsdeterminedbythepastdata,and inContextCodingbyapplyinganarithmeticcodetoeach`next'symbol,conditionedonacontext de¯nedbythealgorithmasafunctionofthepastdata.Hereweadoptadi®erentstrategy:we de¯netheideaofshortestcodelengthinaprobabilisticsense,whichturnsouttosatisfypractical requirements.Todothatwemustbemoreformalaboutmodels.