Jump to content

Talk:Statistical model

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by 220.227.55.53 (talk) at 05:20, 6 March 2010 (statical modelling: new section). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
WikiProject iconStatistics Start‑class
WikiProject iconThis article is within the scope of WikiProject Statistics, a collaborative effort to improve the coverage of statistics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
StartThis article has been rated as Start-class on Wikipedia's content assessment scale.
???This article has not yet received a rating on the importance scale.

Could this be explained for the layman?

statical modelling

b Aswediscussedabovetheproblemofmaininterestforusistoobtainameasureofboththe complexityandthe(useful)informationinadataset.Asinthealgorithmictheorythecomplexity istheprimarynotion,whichthenallowsustode¯nethemoreintricatenotionofinformation.Our planistode¯nethecomplexityintermsoftheshortestcodelengthwhenthedataisencodedwith aclassofmodelsascodes.Intheprevioussectionwesawthatthisleadsintothenoncomputability problemifwelettheclassofmodelsincludethesetofallcomputerprograms,a`model'identi¯ed withacomputerprogram(code)thatgeneratesthegivendata.However,ifweselectasmallerclass thenoncomputabilityproblemcanbeavoidedbutwehavetoovercomeanotherdi±culty:Howare wetode¯netheshortestcodelength?ItseemsthatinordernottofallbacktotheKolmogorov complexitywemustspelloutexactlyhowthedistributionsasmodelsaretobeusedtorestrictthe codingoperations.Inuniversalcodingwedidjustthatbydoingthecodinginapredictiveway,in Lempel-Zivcodebytheindexoftheleafinthetreeofthesegmentsdeterminedbythepastdata,and inContextCodingbyapplyinganarithmeticcodetoeach`next'symbol,conditionedonacontext de¯nedbythealgorithmasafunctionofthepastdata.Hereweadoptadi®erentstrategy:we de¯netheideaofshortestcodelengthinaprobabilisticsense,whichturnsouttosatisfypractical requirements.Todothatwemustbemoreformalaboutmodels.

statical modelling

b Aswediscussedabovetheproblemofmaininterestforusistoobtainameasureofboththe complexityandthe(useful)informationinadataset.Asinthealgorithmictheorythecomplexity istheprimarynotion,whichthenallowsustode¯nethemoreintricatenotionofinformation.Our planistode¯nethecomplexityintermsoftheshortestcodelengthwhenthedataisencodedwith aclassofmodelsascodes.Intheprevioussectionwesawthatthisleadsintothenoncomputability problemifwelettheclassofmodelsincludethesetofallcomputerprograms,a`model'identi¯ed withacomputerprogram(code)thatgeneratesthegivendata.However,ifweselectasmallerclass thenoncomputabilityproblemcanbeavoidedbutwehavetoovercomeanotherdi±culty:Howare wetode¯netheshortestcodelength?ItseemsthatinordernottofallbacktotheKolmogorov complexitywemustspelloutexactlyhowthedistributionsasmodelsaretobeusedtorestrictthe codingoperations.Inuniversalcodingwedidjustthatbydoingthecodinginapredictiveway,in Lempel-Zivcodebytheindexoftheleafinthetreeofthesegmentsdeterminedbythepastdata,and inContextCodingbyapplyinganarithmeticcodetoeach`next'symbol,conditionedonacontext de¯nedbythealgorithmasafunctionofthepastdata.Hereweadoptadi®erentstrategy:we de¯netheideaofshortestcodelengthinaprobabilisticsense,whichturnsouttosatisfypractical requirements.Todothatwemustbemoreformalaboutmodels.