Jump to content

Network transparency

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Holtzlpeter (talk | contribs) at 12:44, 3 March 2010. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Network Transparency in its most general sense refers to the ability of a protocol to transmit data over the network in a manner which is transparent (invisible) to those using the applications that are using the protocol.

The term is often applied in the context of the X Window System which is able to transmit graphical data over the network and integrate it seamlessly with applications running and displaying locally.

Databases

In a centralized database system, the only resource that needs to be shielded from the user is the data (that is, the storage system). In a distributed DBMS, a second resource needs to be managed in much the same manner: the network. Preferably, the user should be protected from the network operational details. Then there would be no difference between database applications that would run on the centralized database and those that would run on a distributed one. This kind of transparency is referred to as network transparency or distribution transparency. From a DBMS perspective, distribution transparency requires that users do not have to specify where data is located.

Some have separated distribution transparency into location transparency and naming transparency.

Location transparency in commands used to perform a task is independent both of the locations of the data, and the system on which an operation is carried out.

Naming transparency means that a unique name is provided for each object in the database. createdby munna and alim. umarkhed

Firewalls

Transparency in firewall technology can be defined at the networing (IP or Internet layer) or at the Application layer.

Transparency at the IP layer means the client targets the real IP address of the server. If a connection is non-transparent, then the client targets an intermediate host (address), which could be a proxy or a caching server. IP layer transparency could be also defined from the point of server's view. If the connection is transparent, the server sees the real client IP. If it is non-transparent, the server sees the IP of the intermediate host.

Transparency at the Application layer means the client application uses the protocol in a different way. An example transparent HTTP request for a server:

GET / HTTP/1.1
Host: example.org
Connection: Keep-Alive

An example non-transparent HTTP request for a proxy (cache):

GET http://example.org/ HTTP/1.1
Proxy-Connection: Keep-Alive

Application layer transparency could by symmetric, when the same working mode is used on both the sides. It could be also asymmetric, when the firewall (usually a proxy) converts server type requests to proxy type or vice versa.

Transparency at the IP layer does not mean automatically application layer transparency.

See also