Jump to content

Minimum polynomial extrapolation

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by CBM (talk | contribs) at 23:34, 30 January 2010 (Tagging with {{mathanalysis-stub}} using user scripts). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, minimum polynomial extrapolation is a sequence transformation used for convergence acceleration.

While Aitken's method is the most famous, it often fails for vector sequences. An effective method for vector sequences is the minimum polynomial extrapolation. It is usually phrased in terms of the fixed point iteration:

Given iterates in , one constructs the matrix whose columns are the differences. Then, one computes the vector where denotes the Moore–Penrose pseudoinverse of . The number 1 is then appended to the end of , and the extrapolated limit is

where is the matrix whose columns are the iterates starting at 2.

The following 4 line MATLAB code segment implements the MPE algorithm:

U=x(:,2:end-1)-x(:,1:end-2);
c=-pinv(U)*(x(:,end)-x(:,end-1));
c(end+1,1)=1;
s=(x(:,2:end)*c)/sum(c);