From Wikipedia, the free encyclopedia
(Work on the Lambda-CDM metric)
The FLRW metric with two spatial dimensions suppressed is

Ignoring the effects of radiation in the early universe and assuming k = 0 and w = −1, the Lambda-CDM scale factor is
![{\displaystyle a(t)=\left[{\frac {\Omega _{m}}{\Omega _{v}}}\sinh ^{2}\left({\frac {3}{2}}{\sqrt {\Omega _{v}}}H_{0}t\right)\right]^{\frac {1}{3}}}](/media/api/rest_v1/media/math/render/svg/612869777b7966078fed8b4d6e86011dc3a68636)
and the WMAP five-year report gives

(Mp = megaparsec, Ga = gigayear).
Putting
![{\displaystyle A=\left[{\frac {\Omega _{m}}{4\Omega _{v}}}\right]^{\frac {1}{3}}\approx 1.15_{7}}](/media/api/rest_v1/media/math/render/svg/d82ac49da281c4c97643b853649763c0c812cd38)
and
,
the Lambda-CDM scale factor may be rewritten as
![{\displaystyle a(t)=A\left[2\sinh \left({\frac {3}{2}}\alpha t\right)\right]^{\frac {2}{3}}}](/media/api/rest_v1/media/math/render/svg/cca83c5d76c88c7d15501663503f5e673c257377)
![{\displaystyle a(t)=A\left[e^{{\frac {3}{2}}\alpha t}-e^{-{\frac {3}{2}}\alpha t}\right]^{\frac {2}{3}}}](/media/api/rest_v1/media/math/render/svg/cb74763b8f64a5effc1062546b7c5acc5a0fe793)
![{\displaystyle a(t)=Ae^{\alpha t}\left[1-e^{-3\alpha t}\right]^{\frac {2}{3}}}](/media/api/rest_v1/media/math/render/svg/1bd752c0407cf238f111111d6cbb794075690fff)
The path of the light ray satisfies
.