From Wikipedia, the free encyclopedia
(Work on the Lambda-CDM metric)
The FLRW metric with two spatial dimensions suppressed is

Ignoring the effects of radiation in the early universe and assuming k = 0 and w = −1, the Lambda-CDM scale factor is
![{\displaystyle a(t)=\left[{\frac {\Omega _{m}}{\Omega _{v}}}\sinh ^{2}\left({\frac {3}{2}}{\sqrt {\Omega _{v}}}H_{0}t\right)\right]^{\frac {1}{3}}}](/media/api/rest_v1/media/math/render/svg/612869777b7966078fed8b4d6e86011dc3a68636)
and the WMAP five-year report gives

(Mp = megaparsec, Ga = gigayear).
Putting
and
,
a(t) can be rewritten as
![{\displaystyle a(t)=A\left[2\sinh \left({\frac {3}{2}}\alpha t\right)\right]^{\frac {2}{3}}}](/media/api/rest_v1/media/math/render/svg/cca83c5d76c88c7d15501663503f5e673c257377)
![{\displaystyle a(t)=A\left[\exp \left({\frac {3}{2}}\alpha t\right)-\exp \left(-{\frac {3}{2}}\alpha t\right)\right]^{\frac {2}{3}}}](/media/api/rest_v1/media/math/render/svg/106d5f9330be2621b00ed97bf2f4c31a83555eda)
![{\displaystyle a(t)=A\exp \left(\alpha t\right)\left[1-\exp \left(-3\alpha t\right)\right]^{\frac {2}{3}}}](/media/api/rest_v1/media/math/render/svg/1b39bb259752f5b2b8e50c71311c6e6b8c3dcfa8)
The path of the light ray satisfies
.