Vector inversion generator
A vector inversion generator (VIG) is an electric pulse compression and voltage multiplication device, allowing shaping a slower, lower voltage pulse to a narrower, higher-voltage one.
VIGs are used in military technology, e.g. some directed-energy weapons, as a secondary stage of another pulsed power source, commonly an explosion driven ferroelectric generator.
A spiral VIG consists of four alternating conductor-insulator-conductor-insulator sheets, wound into a cylinder, forming a capacitor also acting as a single-ended transmission line, connected to a spark gap switch. The capacitor is charged from a power source, e.g. the EDFEG, then the spark gap fires after its breakown voltage is reached. The electromagnetic wave created by the spark discharge travels along the transmission line, converting electrostatic field to electromagnetic field, then after reflecting from the open end converts back to electrostatic field. A pulse of output amplitude 2nU (where n is the number of turns of the capacitor and U is the initial voltage it was charged to) and a rise time equal to twice the electrical length of the transmission line.[1]
Ferrites can be attached to the VIG construction to modify its characteristics.[2]
VIGs are advantageous due to their simplicity and the very short pulse rise times in range of nanoseconds.
VIGs can be constructed by high-voltage hobbyists.[3]