From Wikipedia, the free encyclopedia
A telescoping Markov chain (TMC) is a vector-valued stochastic process that satisfies a Markov property both in a spatial sense and a temporal sense. For any
N
>
0
{\displaystyle N>0}
consider the set of discrete spaces
{
S
ℓ
}
ℓ
=
1
N
{\displaystyle \{{\mathcal {S}}^{\ell }\}_{\ell =1}^{N}}
. The process
θ
k
{\displaystyle \theta _{k}}
defined in the product-space
θ
k
=
(
θ
k
1
,
.
.
.
.
.
,
θ
k
N
)
∈
S
1
×
.
.
.
.
.
.
×
S
N
{\displaystyle \theta _{k}=(\theta _{k}^{1},.....,\theta _{k}^{N})\in {\mathcal {S}}^{1}\times ......\times {\mathcal {S}}^{N}}
is said to be a TMC if there is a set of transition probability matrices
{
Λ
ℓ
}
ℓ
=
1
N
{\displaystyle \{\Lambda ^{\ell }\}_{\ell =1}^{N}}
such that there is a spatial Markov property
P
(
θ
k
n
=
s
|
θ
k
−
1
n
=
r
,
θ
k
n
−
1
=
t
)
=
Λ
n
(
s
|
r
,
t
)
{\displaystyle \mathbb {P} (\theta _{k}^{n}=s|\theta _{k-1}^{n}=r,\theta _{k}^{n-1}=t)=\Lambda ^{n}(s|r,t)}
P
(
θ
k
+
1
=
s
→
|
θ
k
=
r
→
)
=
Λ
1
(
s
1
|
r
1
)
∏
ℓ
=
2
N
Λ
ℓ
(
s
ℓ
|
r
ℓ
,
r
ℓ
−
1
)
{\displaystyle \mathbb {P} (\theta _{k+1}={\vec {s}}|\theta _{k}={\vec {r}})=\Lambda ^{1}(s_{1}|r_{1})\prod _{\ell =2}^{N}\Lambda ^{\ell }(s_{\ell }|r_{\ell },r_{\ell -1})}
where
s
→
=
(
s
1
,
.
.
.
.
,
s
N
)
∈
S
1
×
.
.
.
.
.
.
×
S
N
{\displaystyle {\vec {s}}=(s_{1},....,s_{N})\in {\mathcal {S}}^{1}\times ......\times {\mathcal {S}}^{N}}
and
r
→
=
(
r
1
,
.
.
.
.
.
,
r
N
)
∈
S
1
×
.
.
.
.
.
.
×
S
N
{\displaystyle {\vec {r}}=(r_{1},.....,r_{N})\in {\mathcal {S}}^{1}\times ......\times {\mathcal {S}}^{N}}
.