From Wikipedia, the free encyclopedia
Generalized polygamma function is a function, introduced by Olivier Espinosa and Victor H. Moll[ 1] It generalizes the Polygamma function to negative and fractional order, but remains equal to it for integer positive orders.
It is defined as follows:
ψ
(
z
,
q
)
=
ζ
′
(
z
+
1
,
q
)
+
(
ψ
(
−
z
)
+
γ
)
ζ
(
z
+
1
,
q
)
Γ
(
−
z
)
{\displaystyle \psi (z,q)={\frac {\zeta '(z+1,q)+(\psi (-z)+\gamma )\zeta (z+1,q)}{\Gamma (-z)}}}
or alternatively,
ψ
(
z
,
q
)
=
e
−
γ
z
∂
∂
z
(
e
γ
z
ζ
(
z
+
1
,
q
)
Γ
(
−
z
)
)
{\displaystyle \psi (z,q)=e^{-\gamma z}{\frac {\partial }{\partial z}}\left(e^{\gamma z}{\frac {\zeta (z+1,q)}{\Gamma (-z)}}\right)}
Several special functions can be expressed in terms of generalized polygamma function.
Γ
(
x
)
=
e
ψ
(
−
1
,
x
)
+
1
2
ln
(
2
π
)
{\displaystyle \Gamma (x)=e^{\psi (-1,x)+{\frac {1}{2}}\ln(2\pi )}\,\,\,}
ζ
(
z
,
q
)
=
Γ
(
1
−
z
)
(
2
−
z
(
ψ
(
z
−
1
,
q
2
+
1
2
)
+
ψ
(
z
−
1
,
q
2
)
)
−
ψ
(
z
−
1
,
q
)
)
ln
(
2
)
{\displaystyle \zeta (z,q)={\frac {\Gamma (1-z)\left(2^{-z}\left(\psi \left(z-1,{\frac {q}{2}}+{\frac {1}{2}}\right)+\psi \left(z-1,{\frac {q}{2}}\right)\right)-\psi (z-1,q)\right)}{\ln(2)}}}
where
ζ
(
z
,
q
)
,
{\displaystyle \zeta (z,q),}
is Hurwitz Zeta function
B
n
(
q
)
=
−
n
Γ
(
n
)
(
2
n
−
1
(
ψ
(
−
n
,
q
2
+
1
2
)
+
ψ
(
−
n
,
q
2
)
)
−
ψ
(
−
n
,
q
)
)
ln
(
2
)
{\displaystyle B_{n}(q)=-{\frac {n\Gamma (n)\left(2^{n-1}\left(\psi \left(-n,{\frac {q}{2}}+{\frac {1}{2}}\right)+\psi \left(-n,{\frac {q}{2}}\right)\right)-\psi (-n,q)\right)}{\ln(2)}}}
where
B
n
(
q
)
{\displaystyle B_{n}(q)}
are Bernoulli polynomials
K
(
z
)
=
exp
(
z
−
z
2
2
−
ψ
(
−
2
,
z
)
)
−
ln
A
{\displaystyle K(z)=\exp \left({\frac {z-z^{2}}{2}}-\psi (-2,z)\right)-\ln A}
where K(z) is K-function ana A is Glaisher constant , which itself can be expressed in terms of generalized polygamma function:
A
=
128
π
30
36
π
e
1
3
+
2
3
(
ψ
(
−
1
,
1
/
2
)
−
1
2
ln
(
2
π
)
)
{\displaystyle A={\frac {\sqrt[{36}]{128{\pi }^{30}}}{\pi }}e^{{\frac {1}{3}}+{\frac {2}{3}}\left(\psi (-1,1/2)-{\frac {1}{2}}\ln(2\pi )\right)}}
References
^ Olivier Espinosa Victor H. Moll. Integral Transforms and Special Functions Vol. 15, No. 2, April 2004, pp. 101–115 [1]