Jump to content

Lumer–Phillips theorem

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Rjwilmsi (talk | contribs) at 13:45, 11 November 2009 (Typo fixing, typos fixed: continous → continuous using AWB). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, the Lumer-Phillips theorem, named after Günter Lumer and Ralph Phillips, is a result in the theory of strongly continuous semigroups that gives a necessary and sufficient condition for a linear operator in a Banach space to generate a contraction semigroup.

Statement of the theorem

Let A be a linear operator defined on a linear subspace D(A) of the Banach space X. Then A generates a contraction semigroup if and only if[1]

  1. D(A) is dense in X,
  2. A is closed,
  3. A is dissipative, and
  4. A − λ0I is surjective for some λ00, where I denotes the identity operator.

Variants of the theorem

Reflexive spaces

Let A be a linear operator defined on a linear subspace D(A) of the reflexive Banach space X. Then A generates a contraction semigroup if and only if[2]

  1. A is dissipative, and
  2. A − λ0I is surjective for some λ00, where I denotes the identity operator.

Note that the conditions that D(A) is dense and that A is closed are dropped in comparison to the non-reflexive case. This is because in the reflexive case they follow from the other two conditions.

Dissipativity of the adjoint

Let A be a linear operator defined on a dense linear subspace D(A) of the reflexive Banach space X. Then A generates a contraction semigroup if and only if[3]

In case that X is not reflexive, then this condition for A to generate a contraction semigroup is still sufficient, but not necessary.[4]

Quasicontraction semigroups

Let A be a linear operator defined on a linear subspace D(A) of the Banach space X. Then A generates a quasi contraction semigroup if and only if

  1. D(A) is dense in X,
  2. A is closed,
  3. A is quasidissipative, i.e. there exists a ω≥0 such that ωI-A is dissipative operator, and
  4. A − λ0I is surjective for some λ0ω, where I denotes the identity operator.

Examples

  • Consider H = L2([0, 1]; R) with its usual inner product, and let Au = u′ with domain D(A) equal to those functions u in the Sobolev space H1([0, 1]; R) with u(1) = 0. D(A) is dense. Moreover, for every u in D(A),

so that A is dissipative. The ordinary differential equation u'-λu=f, u(1)=0 has a unique solution u in H1([0, 1]; R) for any f in L2([0, 1]; R), namely

so that the surjectivity condition is satisfied. Hence, by the reflexive version of the Lumer-Phillips theorem A generates a contraction semigroup. There are many more examples where a direct application of the Lumer-Phillips theorem gives the desired result.

In conjunction with translation, scaling and perturbation theory the Lumer-Phillips theorem is the main tool for showing that certain operators generate strongly continuous semigroups. The following is an example in point.

Notes

  1. ^ Engel and Nagel Theorem II.3.15, Arent et. al. Theorem 3.4.5, Staffans Theorem 3.4.8
  2. ^ Engel and Nagel Corollary II.3.20
  3. ^ Engel and Nagel Theorem II.3.17, Staffans Theorem 3.4.8
  4. ^ There do appear statements in the literature that claim equivalence also in the non-reflexive case (e.g. Luo, Guo, Morgul Corollary 2.28), but these are in error.
  5. ^ Engel and Nagel Exercise II.3.25 (ii)

References

  • Lumer, Günter and Phillips, R. S. (1961). "Dissipative operators in a Banach space". Pacific J. Math. 11: 679–698. ISSN 0030-8730.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • Renardy, Michael and Rogers, Robert C. (2004). An introduction to partial differential equations. Texts in Applied Mathematics 13 (Second ed.). New York: Springer-Verlag. p. 356. ISBN 0-387-00444-0.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • Engel, Klaus-Jochen; Nagel, Rainer (2000), One-parameter semigroups for linear evolution equations, Springer
  • Arendt, Wolfgang; Batty, Charles; Hieber, Matthias; Neubrander, Frank (2001), Vector-valued Laplace Transforms and Cauchy Problems, Birkhauser
  • Staffans, Olof (2005), Well-posed linear systems, Cambridge University Press
  • Luo, Zheng-Hua; Guo, Bao-Zhu; Morgul, Omer (1999), Stability and Stabilization of Infinite Dimensional Systems with Applications, Springer