Jump to content

Pebble motion problems

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Michael Hardy (talk | contribs) at 04:37, 4 November 2009 (moved Pebble Motion Problems to Pebble motion problems: lower case per WP:MOS). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Template:New unreviewed article The pebble motion problems are a set of related problems in algorithimic graph theory dealing with the movement of multiple objects ('pebbles') from vertex to vertex in a graph with a constraint on the number of pebbles that can occupy a vertex at any time. Pebble motion problems occur in domains such as multi-robot motion planning (in which the pebbles are robots) and network routing (in which the pebbles are packets of data). The best known example of a pebble motion problem is Sam Loyd's famous 15-puzzle.

Theoretical formulation

The general form of the pebble motion problem is Pebble Motion on a Graph (PMG) [1] formulated as follows:

Let be a graph with vertices. Let be a set of pebbles with . An arrangement of pebbles is a mapping such that for . A move consists of transferring pebble from vertex to adjacent unoccupied vertex . The PMG problem is to decide, given two arrangements and , whether there is a sequence of moves that transforms into .

Variations

Common variations on the problem limit the structure of the graph to be:

Another set of variations consider the case in which some [5] or all [3] of the pebbles are unlabelled and interchangeable.

Other versions of the problem seek not only to prove reachability but to find a (potentially optimal) sequence of moves (i.e. a plan) which performs the transformation.

Complexity

Finding the shortest path in the pebble motion on graphs problem (with labeled pebbles) is known to be NP-hard[6] and APX-hard[3]. The same applies to the unlabelled problem [3].

Applications

References