Jump to content

Hydroelasticity

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by 95.34.136.6 (talk) at 21:43, 3 November 2009 (Importance). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In fluid dynamics and elasticity, hydroelasticity or flexible fluid-structure interaction (FSI), is a branch of science which is concerned with the motion of deformable bodies through liquids. The theory of hydroelasticity has been adapted from aeroelasticity, to describe the effect of structural response of the body on the fluid around it.

Definition

It is the analysis of the time-dependent interaction of hydrodynamic and elastic structural forces. Vibration of floating and submerged ocean structures/vessels encompasses this field of naval architecture.

Importance

Hydroelasticity is of concern in various areas of marine technology such as:

  • High-speed craft.
  • Ships
  • Large scale floating structures such as floating airports[1], floating bridges and buoyant tunnels.
  • Risers.
  • Cable systems and umbilicals for remotely operated or tethered underwater vehicles.
  • Seismic cable systems.
  • Flexible containers for water transport, oil spill recovery and other purposes.

Areas of research

  • Analytical and numerical methods in FSI.
  • Techniques for laboratory and in-service investigations.
  • Stochastic methods.
  • Hydroelasticity-based prediction of Wave Loads and Responses.
  • Impact, sloshing and shock.
  • Flow induced vibration (FIV).
  • Tsunami and seaquake induced responses of large marine structures.
  • Devices for energy extraction.

Current research

Analysis and design of marine structures or systems necessitates integration of hydrodynamics and structural mechanics; i.e. hydroelasticity plays the key role. There has been significant recent progress in research into the hydroelastic phenomena, and the topic of hydroelasticity is of considerable current interest.

Institutes and laboratories

Conferences

  • HYDROELAS : International conference on Hydroelasticity in marine technology.[13]
  • FSI : International conference on fluid-structure interaction.[14]
  • OT : Offshore Technology Conference.[15]
  • ISOPE : International Society of Offshore and Polar Engineers conference.[16]

Journals

  • Journal of Sound and Vibration.[17]
  • Journal of Ship Research.[18]
  • Applied Ocean research. [19]
  • Journal of Engineering Mechanics. [20]
  • IEEE Journal of Oceanic Engineering.[21]

References

  • R.E.D.Bishop and W.G.Price, "Hydroelasticity of ships"; Cambridge University Press, 1979, ISBN 0 521 22328 8.
  • Fumiki Kitō, "Principles of hydro-elasticity", Tokyo : Memorial Committee for Retirement of Dr. F. Kito; Distributed by Yokendo Co., 1970, LCCN 79566961.
  • Edited by S.K.Chakrabarti and C.A.Brebbia, "Fluid structure interaction", Southampton; Boston: WIT, c2001, ISBN 1853128813.
  • Edited by S.K.Chakrabarti and C.A.Brebbia, "Fluid structure interaction and moving boundary problems IV", Southampton : WIT, c2007, ISBN 9781845640729.
  • Edited by Subrata K. Chakrabarti, "Handbook of offshore engineering", Amsterdam ; London : Elsevier, 2005, ISBN 9780080523811.
  • Subrata K. Chakrabarti, "Hydrodynamics of offshore structures", Southampton : Computational Mechanics ; Berlin : Springer Verlag, c1987, ISBN 090545166X.
  • Subrata K. Chakrabarti, "Nonlinear methods in offshore engineering", Amsterdam ; New York : Elsevier, 1990, ISBN 0444884572.
  • Edited by S.K. Chakrabarti, "Numerical models in fluid-structure interaction", Southampton, UK ; Boston : WIT, c2005, ISBN 1853128376.
  • Subrata Kumar Chakrabarti, "Offshore structure modeling", Singapore ; River Edge, N.J. : World Scientific, c1994, (OCoLC)ocm30491315.
  • Subrata K. Chakrabarti, "The theory and practice of hydrodynamics and vibration", River Edge, N.J. : World Scientific, c2002, ISBN 9810249217.
  • Storhaug Gaute, "Experimental investigation of wave induced vibrations and their effect on the fatigue loading of ships", PhD dissertation, NTNU, 2007:133, ISBN 9788247129371.
  • Ottó Haszpra, "Modelling hydroelastic vibrations", London ; San Francisco : Pitman, 1979, ISBN 0273084410.