Talk:Fibonacci heap
![]() | Computing B‑class | |||||||||
|
![]() | Computer science B‑class High‑importance | ||||||||||||||||
|
Mergeable priority queue ADT
Has anyone else ever heard it mentioned that Fibonacci heaps can be used to efficiently implement mergeable priority queues? If you're familiar with CS then you can see from the definitions that it's clearly true (and that merging is far more efficient than if a traditional heap had been used for the priority queues) though I have yet to find an application where merging priority queues needs to be done frequently enough to make it useful :) Anyway, I'd like some opinions on adding that tidbit to the article. DaveWF 07:48, 14 February 2007 (UTC)
Why "Fibonacci"
Although the article mentions that Fibonacci numbers "are used" in the running time analysis, and that Fibonacci numbers give a constraint for subtree size given the order of a node, the "why" of this is not described. I will look into it and add an explanation if I can, but if I don't, someone else could. --CyHawk (talk) 08:42, 15 August 2008 (UTC)
Summary of running times
This list seems to be a little inconsistent. Are accessmin and deletemin really possible in O(1) for binary trees? Also, a statement for linked lists appears to be confusing as it depends on what case (insertion or removal) is preferred by an implementation.--85.178.10.62 (talk) 20:01, 31 August 2008 (UTC)
I think it is misleading that this table states that the insert operation is O(log(n)) on a binary heap, and doesn't mention anything about average time. After each of the log(n) swaps that *could possibly* occur during insertion into a binary heap, the likelihood that the swapping must continue decreases (on average by a factor of about 2). Thus, insertion into a binary heap averages about O(1). (1/2 + 1/4 + 1/8 + ... = 1.) --128.187.80.2 (talk) 18:26, 30 July 2009 (UTC)