Jump to content

Functional analysis

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Cwzwarich (talk | contribs) at 02:17, 4 December 2005 (Fixes a factual error about the Axiom of Choice.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Functional analysis is the branch of mathematics, and specifically of analysis, concerned with the study of spaces of functions. It has its historical roots in the study of transformations, such as the Fourier transform, and in the study of differential and integral equations. This usage of the word functional goes back to the calculus of variations, implying a function whose argument is a function. Its use in general has been attributed to mathematician and physicist Vito Volterra.

Normed vector spaces

In the modern view, functional analysis is seen as the study of complete normed vector spaces over the real or complex numbers. Such spaces are called Banach spaces. An important example is a Hilbert space, where the norm arises from an inner product. These spaces are of fundamental importance in the mathematical formulation of quantum mechanics. More generally, functional analysis includes the study of Fréchet spaces and other topological vector spaces not endowed with a norm.

An important object of study in functional analysis are the continuous linear operators defined on Banach and Hilbert spaces. These lead naturally to the definition of C*-algebras and other operator algebras.

Hilbert spaces can be completely classified: there is a unique Hilbert space up to isomorphism for every cardinality of the base. Since finite-dimensional Hilbert spaces are fully understood in linear algebra, and since morphisms of Hilbert spaces can always be divided into morphisms of spaces with Aleph-null (ℵ0) dimensionality, functional analysis of Hilbert spaces mostly deals with the unique Hilbert space of dimensionality Aleph-null, and its morphisms. One of the open problems in functional analysis is to prove that every operator on a Hilbert space has a proper subspace which is invariant. Many special cases have already been proven.

General Banach spaces are more complicated. There is no clear definition of what would constitute a base, for example.

For any real number p ≥ 1, an example of a Banach space is given by "all Lebesgue-measurable functions whose absolute value's p-th power has finite integral" (see Lp spaces).

In Banach spaces, a large part of the study involves the dual space: the space of all continuous linear functionals. The dual of the dual is not always isomorphic to the original space, but there is always a natural monomorphism from a space into its dual's dual. This is explained in the dual space article.

The notion of derivative is extended to arbitrary functions between Banach spaces. It turns out that the derivative of a function at a certain point is really a continuous linear map.

Major and foundational results

These are important results of functional analysis:

See also: List of functional analysis topics.

Most spaces considered in functional analysis have infinite dimension. To show the existence of a vector space basis for such spaces may require Zorn's lemma. Many very important theorems require the Hahn-Banach theorem, which itself is a form of the Axiom of Choice that is strictly weaker than the Boolean prime ideal theorem.

Points of view

Functional analysis as it currently stands includes a number of directions:

References

  • Yosida, K.: Functional Analysis, Springer-Verlag, 6th edition, 1980
  • Schechter, M.: Principles of Functional Analysis, AMS, 2nd edition, 2001
  • Hutson, V., Pym, J.S., Cloud M.J.: Applications of Functional Analysis and Operator Theory, 2nd edition, Elsevier Science, 2005, ISBN 0444517901
  • Dunford, N. and Schwartz, J.T. : Linear Operators, General Theory, and other 3 volumes, includes visualization charts
  • Brezis, H.: Analyse Fonctionnelle, Dunod
  • Sobolev, S.L.: Applications of Functional Analysis in Mathematical Physics, AMS, 1963
  • Lebedev, L.P. and Vorovich, I.I.: Functional Analysis in Mechanics, Springer-Verlag, 2002