From Wikipedia, the free encyclopedia
Property
If
X
∼
N
(
μ
X
,
σ
X
2
)
{\displaystyle X\sim N(\mu _{X},\sigma _{X}^{2})}
and
Y
∼
N
(
μ
Y
,
σ
Y
2
)
{\displaystyle Y\sim N(\mu _{Y},\sigma _{Y}^{2})}
are independent normal random variables , then:
Their sum is normally distributed with
Z
=
X
+
Y
∼
N
(
μ
X
+
μ
Y
,
σ
X
2
+
σ
Y
2
)
{\displaystyle Z=X+Y\sim N(\mu _{X}+\mu _{Y},\sigma _{X}^{2}+\sigma _{Y}^{2})}
.
Proof
p
(
Z
)
=
∬
X
Y
p
(
X
,
Y
,
Z
)
d
X
d
Y
{\displaystyle p(Z)=\iint _{X\,Y}p(X,Y,Z)\,dX\,dY}
p
(
Z
)
=
∬
X
Y
p
(
X
)
p
(
Y
)
p
(
Z
)
d
X
d
Y
{\displaystyle p(Z)=\iint _{X\,Y}p(X)p(Y)p(Z)\,dX\,dY}
p
(
Z
)
=
∬
X
Y
p
(
X
)
p
(
Y
)
δ
(
Z
−
(
X
+
Y
)
)
d
X
d
Y
{\displaystyle p(Z)=\iint _{X\,Y}p(X)p(Y)\delta (Z-(X+Y))\,dX\,dY}
p
(
Z
)
=
∫
X
p
x
(
X
)
p
y
(
Z
−
X
)
d
X
{\displaystyle p(Z)=\int _{X}p_{x}(X)p_{y}(Z-X)\,dX}
p
(
Z
)
=
∫
X
1
2
π
σ
x
e
−
(
X
−
μ
x
)
2
2
σ
x
2
1
2
π
σ
y
e
−
(
(
Z
−
X
)
−
μ
y
)
2
2
σ
y
2
d
X
{\displaystyle p(Z)=\int _{X}{\frac {1}{{\sqrt {2\pi }}\sigma _{x}}}e^{-{\frac {(X-\mu _{x})^{2}}{2\sigma _{x}^{2}}}}{\frac {1}{{\sqrt {2\pi }}\sigma _{y}}}e^{-{\frac {((Z-X)-\mu _{y})^{2}}{2\sigma _{y}^{2}}}}\,dX}
p
(
Z
)
=
1
2
π
σ
x
σ
y
∫
X
e
−
1
2
[
(
X
−
μ
x
)
2
σ
x
2
+
(
(
Z
−
X
)
−
μ
y
)
2
σ
y
2
]
d
X
{\displaystyle p(Z)={\frac {1}{2\pi \sigma _{x}\sigma _{y}}}\int _{X}e^{-{\frac {1}{2}}[{\frac {(X-\mu _{x})^{2}}{\sigma _{x}^{2}}}+{\frac {((Z-X)-\mu _{y})^{2}}{\sigma _{y}^{2}}}]}\,dX}