Simple theorems in the algebra of sets
Appearance
We list without proof several simple properties of these operations. These properties can be visualized with Venn diagrams.
PROPOSITION 1: For any sets A, B, and C:
- A ∩ A = A;
- A ∪ A = A;
- A \ A = {};
- A ∩ B = B ∩ A;
- A ∪ B = B ∪ A;
- (A ∩ B) ∩ C = A ∩ (B ∩ C);
- (A ∪ B) ∪ C = A ∪ (B ∪ C);
- C \ (A ∩ B) = (C \ A) ∪ (C \ B);
- C \ (A ∪ B) = (C \ A) ∩ (C \ B);
- C \ (B \ A) = (A ∩ C) ∪ (C \ B);
- (B \ A) ∩ C = (B ∩ C) \ A = B ∩ (C \ A);
- (B \ A) ∪ C = (B ∪ C) \ (A \ C);
- A ⊆ B if and only if A ∩ B = A;
- A ⊆ B if and only if A ∪ B = B;
- A ⊆ B if and only if A \ B = {};
- A ∩ B = {} if and only if B \ A = B;
- A ∩ B ⊆ A ⊆ A ∪ B;
- A ∩ {} = {};
- A ∪ {} = A;
- {} \ A = {};
- A \ {} = A.
PROPOSITION 2: For any universal set U and subsets A, B, and C of U:
- A′′ = A;
- B \ A = A' ∩ B;
- (B \ A)' = A ∪ B';
- A ⊆ B if and only if B' ⊆ A';
- A ∩ U = A;
- A ∪ U = U;
- U \ A = A';
- A \ U = {}.
PROPOSITION 3 (distributive laws): For any sets A, B, and C:
- (a) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C);
- (b) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).
The above propositions show that the power set P(U) is a Boolean lattice.