Additive map
Appearance
of additive group of ring into additive group of ring is called additive map of ring into ring .
According to definition of homomorphism of additive group, additive map of ring into ring holds
We do not expect that additive map of ring holds product.
Since and are additive maps, then map is additive. Similarly, the map is additive, when .
Additive map of division ring
Let be division ring of characteristic . We can represent additive map
of division ring as
We assume sum over index . The number of items depends on the function . Expressions are called components of additive map.
References
- Leslie Hogben, Richard A. Brualdi, Anne Greenbaum, Roy Mathias,
Handbook of linear algebra, CRC Press, 2007
- Roger C. Lyndon, Paul E. Schupp,
Combinatorial Group Theory, Springer, 2001
This article has not been added to any content categories. Please help out by adding categories to it so that it can be listed with similar articles. (April 2009) |