Magnetometer
![]() | This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. (June 2008) |
This article needs additional citations for verification. (June 2008) |
A magnetometer is a scientific instrument used to measure the strength and/or direction of the magnetic field in the vicinity of the instrument. Magnetism varies from place to place and differences in Earth's magnetic field (the magnetosphere) can be caused by the differing nature of rocks and the interaction between charged particles from the Sun and the magnetosphere of a planet. Magnetometers are often a frequent component instrument on spacecraft that explore planets.
Uses
Magnetometers are used in geophysical surveys to find deposits of iron because they can measure the magnetic field variations caused by the deposits, airplanes like the Shrike Commander has been used [1]. Magnetometers are also used to detect archaeological sites, shipwrecks and other buried or submerged objects. Magnetic anomaly detectors detect submarines for military purposes.
They are used in directional drilling for oil or gas to detect the azimuth of the drilling tools near the drill bit. They are most often paired up with accelerometers in drilling tools so that both the inclination and azimuth of the drill bit can be found.
Magnetometers are very sensitive, and can give an indication of possible auroral activity before one can see the light from the aurora. A grid of magnetometers around the world constantly measures the effect of the solar wind on the Earth's magnetic field, which is published on the K-index.[1]
In space exploration
A three-axis fluxgate magnetometer was part of the Mariner 2 and Mariner 10 missions.[2]A dual technique Magnetometer is part of the Cassini-Huygens mission to explore Saturn.[3] This system is composed of a vector helium and fluxgate magnetometers.[4] Magnetometers are also a component instrument on the Mercury MESSENGER mission. A magnetometer can also be used by satellites like GOES to measure both the magnitude and direction of a planet's or moon's magnetic field.
Types
Magnetometers can be divided into two basic types:
- Scalar magnetometers measure the total strength of the magnetic field to which they are subjected, and
- Vector magnetometers have the capability to measure the component of the magnetic field in a particular direction.
The use of three orthogonal vector magnetometers allows the magnetic field strength, inclination and declination to be uniquely defined. Examples of vector magnetometers are fluxgates, superconducting quantum interference devices (SQUIDs), and the atomic SERF magnetometer. Some scalar magnetometers are discussed below.
A magnetograph is a special magnetometer that continuously records data.
Rotating coil magnetometer
The magnetic field induces a sine wave in a rotating coil. The amplitude of the signal is proportional to the strength of the field, provided it is uniform, and to the sine of the angle between the rotation axis of the coil and the field lines. This type of magnetometer is obsolete.
Hall effect magnetometer
The most common magnetic sensing devices are solid-state Hall effect sensors. These sensors produce a voltage proportional to the applied magnetic field and also sense polarity.
Proton precession magnetometer
One type of magnetometer is the proton precession magnetometer, also known as the proton magnetometer, which measures the resonance frequency of protons (hydrogen nuclei) in the magnetic field to be measured, due to Nuclear Magnetic Resonance (NMR).
A direct current flowing in an inductor creates a strong magnetic field around a hydrogen-rich fluid, causing the protons to align themselves with that field. The current is then interrupted, and as protons are realigned with Earth's magnetic field they precess at a specific frequency. This produces a weak alternating magnetic field that is picked up by a (sometimes separate) inductor. The relationship between the frequency of the induced current and the strength of Earth's magnetic field is called the proton gyromagnetic ratio, and is equal to 0.042576 hertz per nanotesla (Hz/nT).
Because the precession frequency depends only on atomic constants and the strength of the external magnetic field, the accuracy of this type of magnetometer is very good. Magnetic impurities in the sensor and errors in the measurement of the frequency are the two causes of errors in these magnetometers.
If several tens of watts are available to power the aligning process, these magnetometers can be moderately sensitive. Measuring once per second, standard deviations in the readings in the 0.01 nT to 0.1 nT range can be obtained.
The strength of the Earth's magnetic field varies with time and location, so that the frequency of Earth's field NMR (EFNMR) for protons varies between approximately 1.5 kHz near the equator to 2.5 kHz near the geomagnetic poles.
The measurement of the precession frequency of proton spins in a magnetic field can give the value of the field with high accuracy and is widely used for that purpose. In low fields, such as the Earth's magnetic field, the NMR signal is weak because the nuclear magnetization is small, and specialised electronic amplifiers must be used to enhance the signal. Incorporated in existing portable magnetometers, these devices make them capable of measuring fields to an absolute accuracy of about one part in 106 and detecting field variations of about 0.1 nT. Apart from the direct measurement of the magnetic field on Earth or in space, these magnetometers prove to be useful to detect variations of magnetic field in space or in time, caused by submarines, skiers buried under snow, archaeological remains, and mineral deposits
Fluxgate magnetometer


A fluxgate magnetometer consists of a small, magnetically susceptible, core wrapped by two coils of wire. An alternating electrical current is passed through one coil, driving the core through an alternating cycle of magnetic saturation, i.e., magnetised - unmagnetised - inversely magnetised - unmagnetised - magnetised. This constantly changing field induces an electrical current in the second coil, and this output current is measured by a detector. In a magnetically neutral background, the input and output currents will match. However, when the core is exposed to a background field, it will be more easily saturated in alignment with that field and less easily saturated in opposition to it. Hence the alternating magnetic field, and the induced output current, will be out of step with the input current. The extent to which this is the case will depend on the strength of the background magnetic field. Often, the current in the output coil is integrated, yielding an output analog voltage, proportional to the magnetic field.
Fluxgate magnetometers, paired in a gradiometer configuration, are commonly used for archaeological prospection. In Britain the most common such instruments to be used are the Geoscan FM series of instruments and the Bartington GRAD601. Both are capable of resolving magnetic variations as weak as 0.1 nT (roughly equivalent to one half-millionth of the Earth's magnetic field strength).
A wide variety of sensors are currently available and used to measure magnetic fields. Fluxgate magnetometers and gradiometers measure the direction and magnitude of magnetic fields. Fluxgates are affordable, rugged, compact and very low-power making them ideal for a variety of sensing applications. Fluxgate magnetometer sensors are manufactured in several geometries and recently have made significant improvements in noise performance, crossfield tolerance and power utilization
The typical fluxgate magnetometer consists of a "sense" (secondary) coil surrounding an inner "drive" (primary) coil that is wound around permeable core material. Billingsley Aerospace & Defense, Inc. currently manufactures four types of sensors: ring core, rod / Förster, racetrack and the recently developed Single Domain. Each sensor has magnetic core elements that can be viewed as two carefully matched halves. An alternating current is applied to the drive winding, which drives the core into plus and minus saturation. The instantaneous drive current in each core half is driven in opposite polarity with respect to any external magnetic field. In the absence of any external magnetic field, the flux in one core half cancels that in the other and the total flux seen by the sense coil is zero. If an external magnetic field is now applied, it will, at a given instance in time, aid the flux in one core half and oppose flux in the other. This causes a net flux imbalance between the halves, so that they no longer cancel one another. Current pulses are now induced in the sense winding on every drive current phase reversal (or at the 2nd, and all even harmonics). This results in a signal that is dependent on both the external field magnitude and polarity.
There are additional factors that affect the size of the resultant signal. These factors include the number of turns in the sense winding, magnetic permeability of the core, sensor geometry and the gated flux rate of change with respect to time. Phase synchronous detection is used to convert these harmonic signals to a DC voltage proportional to the external magnetic field.
Fluxgate magnetometers were invented in the 1930s by Victor Vacquier at Gulf Research Laboratories; Vacquier applied them during World War II as an instrument for detecting submarines, and after the war confirmed the theory of plate tectonics by using them to measure shifts in the magnetic patterns on the sea floor.[6]
Cesium vapor magnetometer
A basic example of the workings of a magnetometer may be given by discussing the common "optically pumped cesium vapor magnetometer" which is a highly sensitive (0.004 nT/√Hz) and accurate device used in a wide range of applications. Although it relies on some interesting quantum mechanics to operate, its basic principles are easily explained.
The device broadly consists of a photon emitter containing a cesium light emitter or lamp, an absorption chamber containing cesium vapor and a "buffer gas" through which the emitted photons pass, and a photon detector, arranged in that order.
Polarization
The basic principle that allows the device to operate is the fact that a cesium atom can exist in any of nine energy levels, which is the placement of electron atomic orbitals around the atomic nucleus. When a cesium atom within the chamber encounters a photon from the lamp, it jumps to a higher energy state and then re-emits a photon and falls to an indeterminate lower energy state. The cesium atom is 'sensitive' to the photons from the lamp in three of its nine energy states, and therefore eventually, assuming a closed system, all the atoms will fall into a state in which all the photons from the lamp will pass through unhindered and be measured by the photon detector. At this point the sample (or population) is said to be polarized and ready for measurement to take place. This process is done continuously during operation.
Detection
Given that this theoretically perfect magnetometer is now functional, it can now begin to make measurements.
In the most common type of cesium magnetometer, a very small AC magnetic field is applied to the cell. Since the difference in the energy levels of the electrons is determined by the external magnetic field, there is a frequency at which this small AC field will cause the electrons to change states. In this new state, the electron will once again be able to absorb a photon of light. This causes a signal on a photo detector that measures the light passing through the cell. The associated electronics uses this fact to create a signal exactly at the frequency which corresponds to the external field.
Another type of cesium magnetometer modulates the light applied to the cell. This is referred a Bell–Bloom magnetometer after the two scientists who first investigated the effect. If the light is turned on and off at the frequency corresponding to the Earth's field, there is a change in the signal seen at the photo detector. Again, the associated electronics uses this to create a signal exactly at the frequency which corresponds to the external field.
Both methods lead to high performance magnetometers.
Applications
The cesium magnetometer is typically used where a higher performance magnetometer than the proton magnetometer is needed. In archaeology and geophysics, where the sensor is moved through an area and many accurate magnetic field measurements are needed, the cesium magnetometer has advantages over the proton magnetometer.
The cesium magnetometer's faster measurement rate allow the sensor to be moved through the area more quickly for a given number of data points.
The lower noise of the cesium magnetometer allows those measurements to more accurately show the variations in the field with position.
Spin-exchange-relaxation-free (SERF) atomic magnetometers
At sufficiently high atomic density, extremely high sensitivity can be achieved. Spin-exchange-relaxation-free (SERF) atomic magnetometers containing potassium, cesium or rubidium vapor operate similarly to the cesium magnetometers described above yet can reach sensitivities lower than 1 fT/√Hz.
The SERF magnetometers only operate in small magnetic fields. The Earth's field is about 50 µT. SERF magnetometers operate in fields less than 0.5 µT.
As shown in large volume detectors have achieved 200 aT/√Hz sensitivity. This technology has greater sensitivity per unit volume than SQUID detectors.[7]
The technology can also produce [8] very small magnetometers that may in the future replace coils for detecting changing magnetic fields.
Rapid developments are ongoing in this area. This technology may produce a magnetic sensor that has all of its input and output signals in the form of light on fiberoptic cables. This would allow the magnetic measurement to be made in places where high electrical voltages exist.
SQUID magnetometer
SQUIDs, or superconducting quantum interference devices, measure extremely small magnetic fields; they are very sensitive vector magnetometers, with noise levels as low as 3 fT·Hz−0.5 in commercial instruments and 0.4 fT·Hz−0.5 in experimental devices. Until the advent of SERF atomic magnetometers in 2002, this level of sensitivity was unreachable otherwise.
These magnetometers require cooling with liquid helium (4.2 K) or liquid nitrogen (77 K) to operate, hence the packaging requirements to use them are rather stringent both from a thermal-mechanical as well as magnetic standpoint. SQUID magnetometers allow one to measure the magnetic fields produced by brain or heart activity (magnetoencephalography and magnetocardiography, respectively).
Early magnetometers
In 1833 Carl Friedrich Gauss, head of the Geomagnetic Observatory in Göttingen, published a paper on measurement of the Earth's magnetic field. [9] It described a new instrument that Gauss called a "magnometer" (a term which is still occasionally used instead of magnetometer) [2]. It consisted of a permanent bar magnet suspended horizontally from a gold fibre [3]. A magnetometer is also called a gaussmeter.
See also
- Magnetic anomaly detector
- Nuclear Magnetic Resonance NMR
- Earth's field NMR (EFNMR)
- Magnetic immunoassay
- Search Coil Magnetometer
- Magnetometer Array
- Magnetometer Network
- Magnetometer Data
References
- ^ "Space Weather Production Center". 2008-10-01.
- ^ Coleman, Jr., P.J., Davis, Jr., L., Smith, E.J., Sonett, C.P. (December 7, 1962). "The Mission of Mariner II: Preliminary Observations - Interplanetary Magnetic Fields" (fee required). Science, New Series. 138 (3545): 1099–1100. Retrieved 2008-01-28.
{{cite journal}}
: Check date values in:|date=
(help)CS1 maint: multiple names: authors list (link) - ^ Cassini-Huygens: Spacecraft-Instruments-Dual Technique Magnetometer (MAG)
- ^ Dougherty M. K., Kellock S., Southwood D. J., Balogh A., Smith E. J., Tsurutani B. T., Gerlach B., Glassmeier K. H., Gleim F., Russell C. T., Erdos G., Neubauer E. M., Cowley S. W. H. (2004). "The Cassini magnetic field investigation". Space Science Review. 114: 331–383. doi:10.1007/s11214-004-1432-2.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Fluxgate Magnetometer Technology by Eva Billingsley Wakefield
- ^ "Victor Vacquier Sr., 1907–2009: Geophysicist was a master of magnetics", Los Angeles Times.
- ^ Optical Magnetometry arXiv
- ^ Unknown article in Nature Photonics
- ^ The Intensity of the Earth's Magnetic Force Reduced to Absolute Measurement by Carl Friedrich Gauss
External links
- Earthquake forecasting techniques and more research on the study of electromagnetic fields
- Dan's Homegrown Proton Precession Magnetometer Page
- USGS Geomagnetism Program
- A home built PPM that actually works
- Earth's Field NMR (EFNMR)
- Magnetic archaeological prospection (Swedish National Heritage Board)
- Magnetometer - Measuring the magnetic field of Earth
- Space-based magnetometers