From Wikipedia, the free encyclopedia
In celestial mechanics , the Stumpff functions ck (x) , developed by Karl Stumpff , are used for analyzing orbits using the universal variable formulation [ 1] . They are defined by the formula:
c
k
(
x
)
=
1
k
!
−
x
(
k
+
2
)
!
+
x
2
(
k
+
4
)
!
−
.
.
.
=
∑
i
=
0
∞
(
−
1
)
i
x
i
(
k
+
2
i
)
!
{\displaystyle c_{k}(x)={\frac {1}{k!}}-{\frac {x}{(k+2)!}}+{\frac {x^{2}}{(k+4)!}}-...=\sum _{i=0}^{\infty }{\frac {(-1)^{i}x^{i}}{(k+2i)!}}}
for
k
=
0
,
1
,
2
,
3....
{\displaystyle k=0,1,2,3....}
The series above converges absolutely for all real x .
By comparing the Taylor series expansion of the trigonometric functions sin and cos with c0 (x) and c1 (x) , a relationship can be found:
c
0
(
x
)
=
cos
x
{\displaystyle c_{0}(x)=\cos {\sqrt {x}}}
, for
x
>
0
{\displaystyle x>0}
c
1
(
x
)
=
sin
x
x
{\displaystyle c_{1}(x)={\frac {\sin {\sqrt {x}}}{\sqrt {x}}}}
, for
x
>
0
{\displaystyle x>0}
Similarly, by comparing with the expansion of the hyperbolic functions sinh and cosh we find:
c
0
(
x
)
=
cosh
−
x
{\displaystyle c_{0}(x)=\cosh {{\sqrt {-}}x}}
, for
x
<
0
{\displaystyle x<0}
c
1
(
x
)
=
sinh
−
x
−
x
{\displaystyle c_{1}(x)={\frac {\sinh {{\sqrt {-}}x}}{{\sqrt {-}}x}}}
, for
x
<
0
{\displaystyle x<0}
The Stumpff functions satisfy the recursive relations:
x
c
k
+
2
(
x
)
=
1
k
!
−
c
k
(
x
)
{\displaystyle xc_{k+2}(x)={\frac {1}{k!}}-c_{k}(x)}
, for
k
=
0
,
1
,
2
,
.
.
.
.
{\displaystyle k=0,1,2,....}
References
^ Danby, J.M.A (1988), Fundamentals of Celestial Mechanics , Willman-Bell